LEADER 03979nam a2200625Ia 4500
001 10.1109-JPHOTOV.2022.3169985
008 220630s2022 CNT 000 0 und d
020 |a 21563381 (ISSN) 
245 1 0 |a Improving ALD-Al<formula><tex>  |_ 2  |< /tex></formula>O<formula><tex>  |_ 3  |< /tex></formula> Surface Passivation of Si Utilizing Pre-Existing SiO<formula><tex>  |_ {\text{x}}  |< /tex></formula> 
260 0 |b IEEE Electron Devices Society  |c 2022 
520 3 |a Al<formula><tex>  |_ 2  |< /tex></formula>O<formula><tex>  |_ 3  |< /tex></formula> has rapidly become the surface passivation material of choice for p&#x002B; layers of solar cells because of its high negative fixed charge, good long-term and thermal stability, and no parasitic absorption. In this article, the surface saturation current density, fixed charge, and interface state density are compared for Al<formula><tex>  |_ 2  |< /tex></formula>O<formula><tex>  |_ 3  |< /tex></formula> deposited on Si substrates where the pre-existing out-of-the-box SiO<formula><tex>  |_ {\text{x}}  |< /tex></formula> layer was not removed, with substrates where the SiO<formula><tex>  |_ {\text{x}}  |< /tex></formula> was removed by hydrofluoric acid. The depositions are performed by atomic layer deposition at temperatures in the 150&#x2013;300&#x00A0;&#x00B0;C range, using trimethylaluminium, H<formula><tex>  |_ 2  |< /tex></formula>O, and O<formula><tex>  |_ 3  |< /tex></formula> as precursors. The samples where the native oxide was not removed achieve a higher level of surface passivation for every tested deposition temperature, with the sample deposited at 200&#x2009;&#x00B0;C exhibiting a surface saturation current density of only 0.9&#x00A0;fA&#x002F;cm2 after annealing, a fixed charge of &#x2212;4.2 &#x00D7; 1012&#x00A0;cm&#x2212;2, and a density of interface states of 9.8 &#x00D7; 109&#x00A0;cm&#x2212;2 eV&#x2212;1. Capacitance and conductance voltage characteristics reveal a strong correlation between the surface saturation current density and the density of interface states and fixed charges. It is also determined that the long-term stability of the surface passivation depends on the deposition temperature, with higher deposition temperatures resulting in improved long-term stability. The results indicate that H-terminated Si prior to Al<formula><tex>  |_ 2  |< /tex></formula>O<formula><tex>  |_ 3  |< /tex></formula> deposition may have a detrimental effect on the surface passivation. Author 
650 0 4 |a Al2o3 growth rate 
650 0 4 |a Al2O3 growth rate 
650 0 4 |a Alumina 
650 0 4 |a Aluminum 
650 0 4 |a Aluminum oxide 
650 0 4 |a Annealing 
650 0 4 |a Atomic layer deposition 
650 0 4 |a Current density 
650 0 4 |a Deposition temperatures 
650 0 4 |a effect of HF-dip 
650 0 4 |a Effect of HF-dip 
650 0 4 |a Growth rate 
650 0 4 |a Hafnium oxides 
650 0 4 |a Hydrofluoric acid 
650 0 4 |a Interface states 
650 0 4 |a Long term stability 
650 0 4 |a long-term stability Al2O3 
650 0 4 |a Long-term stability al2o3 
650 0 4 |a optimal deposition temperature Al2O3 
650 0 4 |a Optimal deposition temperature al2o3 
650 0 4 |a out-of-the-box silicon oxide 
650 0 4 |a Out-of-the-box silicon oxide 
650 0 4 |a Passivation 
650 0 4 |a Passivation 
650 0 4 |a Plasma stability 
650 0 4 |a Plasma temperature 
650 0 4 |a Plasma temperature 
650 0 4 |a Silicon 
650 0 4 |a Silicon oxides 
650 0 4 |a Substrates 
650 0 4 |a Substrates 
650 0 4 |a surface passivation 
650 0 4 |a Surface passivation 
650 0 4 |a Temperature measurement 
650 0 4 |a Temperature measurement 
650 0 4 |a Thermal stability 
650 0 4 |a Thermodynamic stability 
650 0 4 |a TMA + o3 + H2O ALD 
650 0 4 |a TMA + O3 + H2O ALD 
700 1 0 |a Getz, M.N.  |e author 
700 1 0 |a Monakhov, E.  |e author 
700 1 0 |a Povoli, M.  |e author 
773 |t IEEE Journal of Photovoltaics 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JPHOTOV.2022.3169985