Visualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectories

Chromatin moves with subdiffusive and spatially constrained dynamics within the cell nucleus. Here, we use single-locus tracking by time-lapse fluorescence microscopy to uncover information regarding the forces that influence chromatin movement following the induction of a persistent DNA double-stra...

Full description

Bibliographic Details
Main Authors: Amitai, Assaf (Contributor), Seeber, Andrew (Author), Gasser, Susan M. (Author), Holcman, David (Author)
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science (Contributor)
Format: Article
Language:English
Published: 2211-1247, 2017-06-13T18:18:01Z.
Subjects:
Online Access:Get fulltext
LEADER 01792 am a22002053u 4500
001 109829
042 |a dc 
100 1 0 |a Amitai, Assaf  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Medical Engineering & Science  |e contributor 
100 1 0 |a Amitai, Assaf  |e contributor 
700 1 0 |a Seeber, Andrew  |e author 
700 1 0 |a Gasser, Susan M.  |e author 
700 1 0 |a Holcman, David  |e author 
245 0 0 |a Visualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectories 
260 |b 2211-1247,   |c 2017-06-13T18:18:01Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/109829 
520 |a Chromatin moves with subdiffusive and spatially constrained dynamics within the cell nucleus. Here, we use single-locus tracking by time-lapse fluorescence microscopy to uncover information regarding the forces that influence chromatin movement following the induction of a persistent DNA double-strand break (DSB). Using improved time-lapse imaging regimens, we monitor trajectories of tagged DNA loci at a high temporal resolution, which allows us to extract biophysical parameters through robust statistical analysis. Polymer modeling based on these parameters predicts chromatin domain expansion near a DSB and damage extrusion from the domain. Both phenomena are confirmed by live imaging in budding yeast. Calculation of the anomalous exponent of locus movement allows us to differentiate forces imposed on the nucleus through the actin cytoskeleton from those that arise from INO80 remodeler-dependent changes in nucleosome organization. Our analytical approach can be applied to high-density single-locus trajectories obtained in any cell type. 
546 |a en_US 
655 7 |a Article 
773 |t Cell Reports