Summary: | In order to improve the life quality of lower extremity amputees, many researchers have studied the powered knee-ankle prosthesis. Various parameters must necessarily be adjusted for the finite state machine impedance model method. Hybrid zero-dynamic (HZD) assumptions are ideal, and with this method measurement information of existing sensors can be limited. The virtual constraint method offers better comprehensive performance at present and can realize the continuous control for the whole gait cycle. The problem with virtual constraint is mainly the selection of phase variables. The joint trajectory of the virtual constraint is derived from a healthy individual, but the joint trajectory of the amputee’s normal walking is difficult to obtain. In response to the above problems, this paper proposes an instinctive human joint trajectory, selecting the phase variable associated with the hip joint angle and angular velocity. The Fourier transform solves the expression of the joint trajectory, and the virtual constraint unifies the control method of the entire gait cycle. The simulation results prove the feasibility of the scheme.
|