Suppression of cancer progression by MGAT1 shRNA knockdown.

Oncogenic signaling promotes tumor invasion and metastasis, in part, by increasing the expression of tri- and tetra- branched N-glycans. The branched N-glycans bind to galectins forming a multivalent lattice that enhances cell surface residency of growth factor receptors, and focal adhesion turnover...

Full description

Bibliographic Details
Main Authors: Reza Beheshti Zavareh, Mahadeo A Sukhai, Rose Hurren, Marcela Gronda, Xiaoming Wang, Craig D Simpson, Neil Maclean, Francis Zih, Troy Ketela, Carol J Swallow, Jason Moffat, David R Rose, Harry Schachter, Aaron D Schimmer, James W Dennis
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3434202?pdf=render
Description
Summary:Oncogenic signaling promotes tumor invasion and metastasis, in part, by increasing the expression of tri- and tetra- branched N-glycans. The branched N-glycans bind to galectins forming a multivalent lattice that enhances cell surface residency of growth factor receptors, and focal adhesion turnover. N-acetylglucosaminyltransferase I (MGAT1), the first branching enzyme in the pathway, is required for the addition of all subsequent branches. Here we have introduced MGAT1 shRNA into human HeLa cervical and PC-3-Yellow prostate tumor cells lines, generating cell lines with reduced transcript, enzyme activity and branched N-glycans at the cell surface. MGAT1 knockdown inhibited HeLa cell migration and invasion, but did not alter cell proliferation rates. Swainsonine, an inhibitor of α-mannosidase II immediately downstream of MGAT1, also inhibited cell invasion and was not additive with MGAT1 shRNA, consistent with a common mechanism of action. Focal adhesion and microfilament organization in MGAT1 knockdown cells also indicate a less motile phenotype. In vivo, MGAT1 knockdown in the PC-3-Yellow orthotopic prostate cancer xenograft model significantly decreased primary tumor growth and the incidence of lung metastases. Our results demonstrate that blocking MGAT1 is a potential target for anti-cancer therapy.
ISSN:1932-6203