The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.

Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pat...

Full description

Bibliographic Details
Main Authors: Marie-Hélène Ruchaud-Sparagano, Sabrina Mühlen, Paul Dean, Brendan Kenny
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-12-01
Series:PLoS Pathogens
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22144899/pdf/?tool=EBI
id doaj-60416883997542438378929f55d7f720
record_format Article
spelling doaj-60416883997542438378929f55d7f7202021-04-21T17:29:47ZengPublic Library of Science (PLoS)PLoS Pathogens1553-73661553-73742011-12-01712e100241410.1371/journal.ppat.1002414The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.Marie-Hélène Ruchaud-SparaganoSabrina MühlenPaul DeanBrendan KennyEnteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22144899/pdf/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Marie-Hélène Ruchaud-Sparagano
Sabrina Mühlen
Paul Dean
Brendan Kenny
spellingShingle Marie-Hélène Ruchaud-Sparagano
Sabrina Mühlen
Paul Dean
Brendan Kenny
The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.
PLoS Pathogens
author_facet Marie-Hélène Ruchaud-Sparagano
Sabrina Mühlen
Paul Dean
Brendan Kenny
author_sort Marie-Hélène Ruchaud-Sparagano
title The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.
title_short The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.
title_full The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.
title_fullStr The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.
title_full_unstemmed The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.
title_sort enteropathogenic e. coli (epec) tir effector inhibits nf-κb activity by targeting tnfα receptor-associated factors.
publisher Public Library of Science (PLoS)
series PLoS Pathogens
issn 1553-7366
1553-7374
publishDate 2011-12-01
description Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22144899/pdf/?tool=EBI
work_keys_str_mv AT marieheleneruchaudsparagano theenteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT sabrinamuhlen theenteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT pauldean theenteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT brendankenny theenteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT marieheleneruchaudsparagano enteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT sabrinamuhlen enteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT pauldean enteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
AT brendankenny enteropathogenicecoliepectireffectorinhibitsnfkbactivitybytargetingtnfareceptorassociatedfactors
_version_ 1714666040860868608