Summary: | Unexpected severe hull deformation caused by wave loads poses alignment problem to the propulsion shaft line in large scale ships, which would significantly influence the dynamical performance of the marine propulsion system. How to suppress negative disturbance imposed by the interaction between water-hull-propulsion and ensure the normal operation of the marine propulsion system is a challenging task. To address this issue, a new global sliding model control (GSMC) for marine water-hull-propulsion unit systems is proposed and investigated to obtain more accurate control performance in a series of researches. In Part 1 the GSMC controller has been developed and the bounded nonlinear model uncertainties have been derived based on the experiments and sea trial. In this work the upper boundary of 1,85 % was introduced into the GSMC controller to derive the total control law realising the robust control of the marine propulsion system. Numerical simulations based on the real bulk carrier parameters show a high effectiveness of the GSMC for speed tracking, compared with the traditional sliding model controller and Proportional Integral Derivative (PID) controller. By the proposed and investigated control system in this paper may be developed a simple practical-effective robust control strategy for marine propulsion systems subject to some complex unknown uncertainties through further investigations, validations and modifications
|