A Novel Design Framework for Point-to-Point ILC Using Successive Projection
A novel design approach is proposed for point-to-point iterative learning control (ILC), enabling system constraints to be satisfied while simultaneously addressing the requirement for high-performance tracking. It is shown that point-to-point ILC design can be formulated and solved using a successi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2015-05-01.
|
Subjects: | |
Online Access: | Get fulltext |
Summary: | A novel design approach is proposed for point-to-point iterative learning control (ILC), enabling system constraints to be satisfied while simultaneously addressing the requirement for high-performance tracking. It is shown that point-to-point ILC design can be formulated and solved using a successive projection first proposed by J. von Neumann, allowing a number of new point-to-point ILC algorithms to be developed and analyzed. To illustrate this framework, two new algorithms are derived with different convergence and computational properties for the constrained point-to-point ILC design problem. The proposed algorithms are validated on a robotic arm with experimental results demonstrating their effectiveness. |
---|