Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection

Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEM...

Full description

Bibliographic Details
Main Authors: Chen, Y. (Author), Domenzain, I. (Author), Ji, B. (Author), Kerkhoven, E.J (Author), Li, F. (Author), Li, G. (Author), Lu, H. (Author), Nielsen, J. (Author), Wang, H. (Author), Yu, R. (Author), Yuan, L. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03102nam a2200577Ia 4500
001 10.15252-msb.202110427
008 220427s2021 CNT 000 0 und d
020 |a 17444292 (ISSN) 
245 1 0 |a Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.15252/msb.202110427 
520 3 |a Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations. © 2021 The Authors. Published under the terms of the CC BY 4.0 license 
650 0 4 |a article 
650 0 4 |a Crabtree effect 
650 0 4 |a Evolution, Molecular 
650 0 4 |a gene duplication 
650 0 4 |a Gene Duplication 
650 0 4 |a Gene Transfer, Horizontal 
650 0 4 |a genetics 
650 0 4 |a genome 
650 0 4 |a Genome 
650 0 4 |a genome analysis 
650 0 4 |a genome analysis 
650 0 4 |a genome-scale metabolic models 
650 0 4 |a heat tolerance 
650 0 4 |a horizontal gene transfer 
650 0 4 |a metabolic innovation 
650 0 4 |a Metabolic Networks and Pathways 
650 0 4 |a metabolism 
650 0 4 |a molecular evolution 
650 0 4 |a multigene family 
650 0 4 |a nonhuman 
650 0 4 |a phenotypic variation 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a simulation 
650 0 4 |a systems biology 
650 0 4 |a systems biology 
650 0 4 |a yeast 
700 1 |a Chen, Y.  |e author 
700 1 |a Domenzain, I.  |e author 
700 1 |a Ji, B.  |e author 
700 1 |a Kerkhoven, E.J.  |e author 
700 1 |a Li, F.  |e author 
700 1 |a Li, G.  |e author 
700 1 |a Lu, H.  |e author 
700 1 |a Nielsen, J.  |e author 
700 1 |a Wang, H.  |e author 
700 1 |a Yu, R.  |e author 
700 1 |a Yuan, L.  |e author 
773 |t Molecular Systems Biology