Computational redesign of a fluorogen activating protein with Rosetta

The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitr...

Full description

Bibliographic Details
Main Authors: Baranov, M.S (Author), Bender, B.J (Author), Bozhanova, N.G (Author), Gavrikov, A.S (Author), Gorbachev, D.A (Author), Harp, J.M (Author), Lukyanov, K.A (Author), Meiler, J. (Author), Mercado, C.B (Author), Mishin, A.S (Author), Zhang, X. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04252nam a2200925Ia 4500
001 10.1371-journal.pcbi.1009555
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Computational redesign of a fluorogen activating protein with Rosetta 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009555 
520 3 |a The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of finetuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed. Copyright © 2021 Bozhanova et al. 
650 0 4 |a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 
650 0 4 |a amino acid sequence 
650 0 4 |a Amino Acid Sequence 
650 0 4 |a Article 
650 0 4 |a biology 
650 0 4 |a Boron Compounds 
650 0 4 |a boron derivative 
650 0 4 |a chemistry 
650 0 4 |a chromatophore 
650 0 4 |a Computational Biology 
650 0 4 |a computer analysis 
650 0 4 |a computer model 
650 0 4 |a controlled study 
650 0 4 |a Crystallography, X-Ray 
650 0 4 |a drug design 
650 0 4 |a Drug Design 
650 0 4 |a fluorescence 
650 0 4 |a Fluorescence 
650 0 4 |a fluorescence imaging 
650 0 4 |a fluorescence microscopy 
650 0 4 |a fluorescent dye 
650 0 4 |a fluorescent dye 
650 0 4 |a Fluorescent Dyes 
650 0 4 |a fluorogen activating protein 
650 0 4 |a genetics 
650 0 4 |a HEK293 cell line 
650 0 4 |a HEK293 Cells 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a in vitro study 
650 0 4 |a ligand binding 
650 0 4 |a Luminescent Proteins 
650 0 4 |a macromolecule 
650 0 4 |a Microscopy, Fluorescence 
650 0 4 |a Models, Molecular 
650 0 4 |a molecular docking 
650 0 4 |a Molecular Docking Simulation 
650 0 4 |a molecular model 
650 0 4 |a mutation 
650 0 4 |a photoprotein 
650 0 4 |a prediction 
650 0 4 |a procedures 
650 0 4 |a protein analysis 
650 0 4 |a protein binding 
650 0 4 |a protein conformation 
650 0 4 |a Protein Conformation 
650 0 4 |a protein engineering 
650 0 4 |a Protein Engineering 
650 0 4 |a protein stability 
650 0 4 |a recombinant protein 
650 0 4 |a Recombinant Proteins 
650 0 4 |a Rosetta modeling 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a unclassified drug 
650 0 4 |a X ray crystallography 
700 1 |a Baranov, M.S.  |e author 
700 1 |a Bender, B.J.  |e author 
700 1 |a Bozhanova, N.G.  |e author 
700 1 |a Gavrikov, A.S.  |e author 
700 1 |a Gorbachev, D.A.  |e author 
700 1 |a Harp, J.M.  |e author 
700 1 |a Lukyanov, K.A.  |e author 
700 1 |a Meiler, J.  |e author 
700 1 |a Mercado, C.B.  |e author 
700 1 |a Mishin, A.S.  |e author 
700 1 |a Zhang, X.  |e author 
773 |t PLoS Computational Biology