Transcriptomic profiling in canines and humans reveals cancer specific gene modules and biological mechanisms common to both species

Understanding relationships between spontaneous cancer in companion (pet) canines and humans can facilitate biomarker and drug development in both species. Towards this end we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics data in the context of existing human...

Full description

Bibliographic Details
Main Authors: Braisted, J. (Author), Breen, M. (Author), Gerhold, D. (Author), Grewal, G. (Author), LeBlanc, A.K (Author), Mazcko, C. (Author), Sittampalam, G. (Author), Tawa, G.J (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
dog
Online Access:View Fulltext in Publisher
LEADER 05533nam a2201213Ia 4500
001 10.1371-journal.pcbi.1009450
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Transcriptomic profiling in canines and humans reveals cancer specific gene modules and biological mechanisms common to both species 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009450 
520 3 |a Understanding relationships between spontaneous cancer in companion (pet) canines and humans can facilitate biomarker and drug development in both species. Towards this end we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics data in the context of existing human data to evaluate comparative relevance of canine to human cancer. We used this protocol to characterize five canine cancers: melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, in 60 dogs. We applied an unsupervised, iterative clustering method that yielded five co-expression modules and found that each cancer exhibited a unique module expression profile. We constructed cancer models based on the co-expression modules and used the models to successfully classify the canine data. These canine-derived models also successfully classified human tumors representing the same cancers, indicating shared cancer biology between canines and humans. Annotation of the module genes identified cancer specific pathways relevant to cells-of-origin and tumor biology. For example, annotations associated with melanin production (PMEL, GPNMB, and BACE2), synthesis of bone material (COL5A2, COL6A3, and COL12A1), synthesis of pulmonary surfactant (CTSH, LPCAT1, and NAPSA), ribosomal proteins (RPL8, RPS7, and RPLP0), and epigenetic regulation (EDEM1, PTK2B, and JAK1) were unique to melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, respectively. In total, 152 biomarker candidates were selected from highly expressing modules for each cancer type. Many of these biomarker candidates are under-explored as drug discovery targets and warrant further study. The demonstrated transferability of classification models from canines to humans enforces the idea that tumor biology, biomarker targets, and associated therapeutics, discovered in canines, may translate to human medicine. Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. 
650 0 4 |a animal 
650 0 4 |a animal cell 
650 0 4 |a animal tissue 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a B cell lymphoma 
650 0 4 |a BACE2 gene 
650 0 4 |a bioinformatics 
650 0 4 |a biology 
650 0 4 |a Biomarkers, Tumor 
650 0 4 |a Bone Neoplasms 
650 0 4 |a bone tumor 
650 0 4 |a cancer model 
650 0 4 |a Canis 
650 0 4 |a classification 
650 0 4 |a clustering algorithm 
650 0 4 |a COL12A1 gene 
650 0 4 |a COL5A2 gene 
650 0 4 |a COL6A3 gene 
650 0 4 |a Computational Biology 
650 0 4 |a controlled study 
650 0 4 |a CTSH gene 
650 0 4 |a data classification 
650 0 4 |a dog 
650 0 4 |a dog disease 
650 0 4 |a Dog Diseases 
650 0 4 |a Dogs 
650 0 4 |a EDEM1 gene 
650 0 4 |a epigenetics 
650 0 4 |a gene 
650 0 4 |a gene activation 
650 0 4 |a gene expression profiling 
650 0 4 |a Gene Expression Profiling 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation, Neoplastic 
650 0 4 |a gene regulatory network 
650 0 4 |a Gene Regulatory Networks 
650 0 4 |a genetic association 
650 0 4 |a genetics 
650 0 4 |a GPNMB gene 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a JAK1 gene 
650 0 4 |a k nearest neighbor 
650 0 4 |a LPCAT1 gene 
650 0 4 |a lung carcinoma 
650 0 4 |a Lung Neoplasms 
650 0 4 |a lung surfactant 
650 0 4 |a lung tumor 
650 0 4 |a Lymphoma, B-Cell 
650 0 4 |a Lymphoma, T-Cell 
650 0 4 |a melanogenesis 
650 0 4 |a melanoma 
650 0 4 |a Melanoma 
650 0 4 |a molecular fingerprinting 
650 0 4 |a molecular genetics 
650 0 4 |a Molecular Sequence Annotation 
650 0 4 |a Molecular Targeted Therapy 
650 0 4 |a molecularly targeted therapy 
650 0 4 |a NAPSA gene 
650 0 4 |a neoplasm 
650 0 4 |a Neoplasms 
650 0 4 |a nonhuman 
650 0 4 |a oncogene 
650 0 4 |a Oncogenes 
650 0 4 |a ossification 
650 0 4 |a osteosarcoma 
650 0 4 |a Osteosarcoma 
650 0 4 |a PMEL gene 
650 0 4 |a PTK2B gene 
650 0 4 |a ribosome protein 
650 0 4 |a RPL8 gene 
650 0 4 |a RPLP0 gene 
650 0 4 |a RPS7 gene 
650 0 4 |a species difference 
650 0 4 |a Species Specificity 
650 0 4 |a T cell lymphoma 
650 0 4 |a transcriptomics 
650 0 4 |a Translational Medical Research 
650 0 4 |a translational research 
650 0 4 |a tumor gene 
650 0 4 |a tumor marker 
650 0 4 |a veterinary medicine 
700 1 |a Braisted, J.  |e author 
700 1 |a Breen, M.  |e author 
700 1 |a Gerhold, D.  |e author 
700 1 |a Grewal, G.  |e author 
700 1 |a LeBlanc, A.K.  |e author 
700 1 |a Mazcko, C.  |e author 
700 1 |a Sittampalam, G.  |e author 
700 1 |a Tawa, G.J.  |e author 
773 |t PLoS Computational Biology