Hybrid computational modeling demonstrates the utility of simulating complex cellular networks in type 1 diabetes

Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multifaceted pancreatic cellular interactions in various phase progressions. Owing to the inherent heterogeneity of coupled nonlinear systems, computational modeling based on T1D etiology help achieve a systematic und...

Full description

Bibliographic Details
Main Authors: Jaberi-Douraki, M. (Author), Li, Y. (Author), Shi, Z. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04268nam a2200709Ia 4500
001 10.1371-JOURNAL.PCBI.1009413
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Hybrid computational modeling demonstrates the utility of simulating complex cellular networks in type 1 diabetes 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/JOURNAL.PCBI.1009413 
520 3 |a Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multifaceted pancreatic cellular interactions in various phase progressions. Owing to the inherent heterogeneity of coupled nonlinear systems, computational modeling based on T1D etiology help achieve a systematic understanding of biological processes and T1D health outcomes. The main challenge is to design such a reliable framework to analyze the highly orchestrated biology of T1D based on the knowledge of cellular networks and biological parameters. We constructed a novel hybrid in-silico computational model to unravel T1D onset, progression, and prevention in a non-obese-diabetic mouse model. The computational approach that integrates mathematical modeling, agent-based modeling, and advanced statistical methods allows for modeling key biological parameters and time-dependent spatial networks of cell behaviors. By integrating interactions between multiple cell types, model results captured the individual-specific dynamics of T1D progression and were validated against experimental data for the number of infiltrating CD8+T-cells. Our simulation results uncovered the correlation between five auto-destructive mechanisms identifying a combination of potential therapeutic strategies: the average lifespan of cytotoxic CD8+T-cells in islets; the initial number of apoptotic β-cells; recruitment rate of dendritic-cells (DCs); binding sites on DCs for naïve CD8+T-cells; and time required for DCs movement. Results from therapy-directed simulations further suggest the efficacy of proposed therapeutic strategies depends upon the type and time of administering therapy interventions and the administered amount of therapeutic dose. Our findings show modeling immunogenicity that underlies autoimmune T1D and identifying autoantigens that serve as potential biomarkers are two pressing parameters to predict disease onset and progression. © 2021 Shi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a apoptosis 
650 0 4 |a Article 
650 0 4 |a autoantigen 
650 0 4 |a Autoantigens 
650 0 4 |a autoimmunity 
650 0 4 |a binding site 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a CD8+ T lymphocyte 
650 0 4 |a CD8-Positive T-Lymphocytes 
650 0 4 |a cell communication 
650 0 4 |a Cell Communication 
650 0 4 |a Computational Biology 
650 0 4 |a computer model 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a cytotoxic T lymphocyte 
650 0 4 |a dendritic cell 
650 0 4 |a Dendritic Cells 
650 0 4 |a Diabetes Mellitus, Type 1 
650 0 4 |a disease exacerbation 
650 0 4 |a Disease Progression 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a immunology 
650 0 4 |a insulin dependent diabetes mellitus 
650 0 4 |a insulin dependent diabetes mellitus 
650 0 4 |a Insulin-Secreting Cells 
650 0 4 |a lymphocytic infiltration 
650 0 4 |a mathematical model 
650 0 4 |a Mice 
650 0 4 |a Mice, Inbred NOD 
650 0 4 |a Models, Immunological 
650 0 4 |a mouse 
650 0 4 |a nonhuman 
650 0 4 |a nonobese diabetic mouse 
650 0 4 |a pancreas islet beta cell 
650 0 4 |a pathology 
650 0 4 |a sensitivity analysis 
650 0 4 |a simulation 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a system analysis 
650 0 4 |a Systems Analysis 
700 1 |a Jaberi-Douraki, M.  |e author 
700 1 |a Li, Y.  |e author 
700 1 |a Shi, Z.  |e author 
773 |t PLoS Computational Biology