A new algorithm to train hidden Markov models for biological sequences with partial labels
Background: Hidden Markov models (HMM) are a powerful tool for analyzing biological sequences in a wide variety of applications, from profiling functional protein families to identifying functional domains. The standard method used for HMM training is either by maximum likelihood using counting when...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BioMed Central Ltd
2021
|
Subjects: | |
Online Access: | View Fulltext in Publisher |