Heat transfer in a conical gap using H2O–Cu nanofluid and porous media. Effects of the main physical parameters
Heat transfer around a conical antenna is quantified in this work. Cooling of this active electronic component is ensured by a medium of high porosity saturated by a H2O–Cu nanofluid with a volume fraction varying between 0% and 5%. The ratio between the thermal conductivity of the porous materials...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2023
|
Subjects: | |
Online Access: | View Fulltext in Publisher |