Abnormal regulation of microRNAs and related genes in pediatric β-thalassemia

Background: MicroRNAs (miRNAs) participate in the reactivation of γ-globin expression in β-thalassemia. However, the miRNA transcriptional profiles of pediatric β-thalassemia remain unclear. Accordingly, in this study, we assessed miRNA expression in pediatric patients with β-thalassemia. Methods: D...

Full description

Bibliographic Details
Main Authors: Chen, M. (Author), Huang, H. (Author), Pan, Y. (Author), Wang, H. (Author), Xu, L. (Author), Xu, S. (Author), Zhang, Y. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05087nam a2201081Ia 4500
001 10.1002-jcla.23945
008 220427s2021 CNT 000 0 und d
020 |a 08878013 (ISSN) 
245 1 0 |a Abnormal regulation of microRNAs and related genes in pediatric β-thalassemia 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/jcla.23945 
520 3 |a Background: MicroRNAs (miRNAs) participate in the reactivation of γ-globin expression in β-thalassemia. However, the miRNA transcriptional profiles of pediatric β-thalassemia remain unclear. Accordingly, in this study, we assessed miRNA expression in pediatric patients with β-thalassemia. Methods: Differentially expressed miRNAs in pediatric patients with β-thalassemia were determined using microRNA sequencing. Results: Hsa-miR-483-3p, hsa-let-7f-1-3p, hsa-let-7a-3p, hsa-miR-543, hsa-miR-433-3p, hsa-miR-4435, hsa-miR-329-3p, hsa-miR-92b-5p, hsa-miR-6747-3p and hsa-miR-495-3p were significantly upregulated, whereas hsa-miR-4508, hsa-miR-20a-5p, hsa-let-7b-5p, hsa-miR-93-5p, hsa-let-7i-5p, hsa-miR-6501-5p, hsa-miR-221-3p, hsa-let-7g-5p, hsa-miR-106a-5p, and hsa-miR-17-5p were significantly downregulated in pediatric patients with β-thalassemia. After integrating our data with a previously published dataset, we found that hsa-let-7b-5p and hsa-let-7i-5p expression levels were also lower in adolescent or adult patients with β-thalassemia. The predicted target genes of hsa-let-7b-5p and hsa-let-7i-5p were associated with the transforming growth factor β receptor, phosphatidylinositol 3-kinase/AKT, FoxO, Hippo, and mitogen-activated protein kinase signaling pathways. We also identified 12 target genes of hsa-let-7a-3p and hsa-let-7f-1-3p and 21 target genes of hsa-let-7a-3p and hsa-let-7f-1-3p, which were differentially expressed in patients with β-thalassemia. Finally, we found that hsa-miR-190-5p and hsa-miR-1278-5p may regulate hemoglobin switching by modulation of the B-cell lymphoma/leukemia 11A gene. Conclusion: The results of the study show that several microRNAs are dysregulated in pediatric β-thalassemia. Further, the results also indicate toward a critical role of let7 miRNAs in the pathogenesis of pediatric β-thalassemia, which needs to be investigated further. © 2021 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC. 
650 0 4 |a Article 
650 0 4 |a B-cell lymphoma/leukemia 11A 
650 0 4 |a beta thalassemia 
650 0 4 |a beta thalassemia 
650 0 4 |a beta-Thalassemia 
650 0 4 |a case control study 
650 0 4 |a Case-Control Studies 
650 0 4 |a Child, Preschool 
650 0 4 |a clinical article 
650 0 4 |a controlled study 
650 0 4 |a DNA synthesis 
650 0 4 |a down regulation 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a gene expression profiling 
650 0 4 |a Gene Expression Profiling 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation 
650 0 4 |a gene regulatory network 
650 0 4 |a Gene Regulatory Networks 
650 0 4 |a gene silencing 
650 0 4 |a genetic transcription 
650 0 4 |a genetics 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a human serum albumin 
650 0 4 |a Humans 
650 0 4 |a let7 microRNA 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a mean corpuscular hemoglobin 
650 0 4 |a mean corpuscular volume 
650 0 4 |a microRNA 
650 0 4 |a microRNA 
650 0 4 |a microRNA 106a 5p 
650 0 4 |a microRNA 17 5p 
650 0 4 |a microRNA 20a 5p 
650 0 4 |a microRNA 221 3p 
650 0 4 |a microRNA 329 3p 
650 0 4 |a microRNA 433 3p 
650 0 4 |a microRNA 4435 
650 0 4 |a microRNA 4508 
650 0 4 |a microRNA 483 3p 
650 0 4 |a microRNA 495 3p 
650 0 4 |a microRNA 543 
650 0 4 |a microRNA 6501 5p 
650 0 4 |a microRNA 6747 3p 
650 0 4 |a microRNA 92b 5p 
650 0 4 |a microRNA 93 5p 
650 0 4 |a microRNA let 7a 3p 
650 0 4 |a microRNA let 7f 1 3p 
650 0 4 |a microRNA let 7g 5p 
650 0 4 |a microRNA let 7i 5p 
650 0 4 |a microRNA let7b 5p 
650 0 4 |a microRNA sequencing 
650 0 4 |a MicroRNAs 
650 0 4 |a morphogenesis 
650 0 4 |a pathology 
650 0 4 |a pediatric β-thalassemia 
650 0 4 |a phosphatidylinositol 3 kinase 
650 0 4 |a platelet count 
650 0 4 |a preschool child 
650 0 4 |a prognosis 
650 0 4 |a Prognosis 
650 0 4 |a protein kinase B 
650 0 4 |a RNA isolation 
650 0 4 |a RNA sequence 
650 0 4 |a transcription regulation 
650 0 4 |a transforming growth factor beta 
650 0 4 |a transforming growth factor beta receptor 
650 0 4 |a unclassified drug 
650 0 4 |a upregulation 
650 0 4 |a γ-globin reactivation 
700 1 |a Chen, M.  |e author 
700 1 |a Huang, H.  |e author 
700 1 |a Pan, Y.  |e author 
700 1 |a Wang, H.  |e author 
700 1 |a Xu, L.  |e author 
700 1 |a Xu, S.  |e author 
700 1 |a Zhang, Y.  |e author 
773 |t Journal of Clinical Laboratory Analysis