High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria

Background: Our interconnected world and the ability of bacteria to quickly swap antibiotic resistance genes (ARGs) make it particularly important to establish the epidemiological links of multidrug resistance (MDR) transfer between wastewater treatment plant (WWTP)- and human/animal-associated bact...

Full description

Bibliographic Details
Main Authors: Břinda, K. (Author), Che, Y. (Author), Hanage, W. (Author), Xu, X. (Author), Yang, C. (Author), Yang, Y. (Author), Zhang, T. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2022
Subjects:
MDR
Online Access:View Fulltext in Publisher
LEADER 04991nam a2201021Ia 4500
001 10-1186-s40168-021-01192-w
008 220420s2022 CNT 000 0 und d
020 |a 20492618 (ISSN) 
245 1 0 |a High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria 
260 0 |b BioMed Central Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s40168-021-01192-w 
520 3 |a Background: Our interconnected world and the ability of bacteria to quickly swap antibiotic resistance genes (ARGs) make it particularly important to establish the epidemiological links of multidrug resistance (MDR) transfer between wastewater treatment plant (WWTP)- and human/animal-associated bacteria, under the One Health framework. However, evidence of ARGs exchange and potential factors that contribute to this transfer remain limited. Results: Here, by combining culture-based population genomics and genetic comparisons with publicly available datasets, we reconstructed the complete genomes of 82 multidrug-resistant isolates from WWTPs and found that most WWTP-associated isolates were genetically distinct from their closest human/animal-associated relatives currently available in the public database. Even in the minority of lineages that were closely related, WWTP-associated isolates were characterized by quite different plasmid compositions. We identified a high diversity of circular plasmids (264 in total, of which 141 were potentially novel), which served as the main source of resistance, and showed potential horizontal transfer of ARG-bearing plasmids between WWTP- and humans/animal-associated bacteria. Notably, the potentially transferred ARGs and virulence factors (VFs) with different genetic backgrounds were closely associated with flanking insertion sequences (ISs), suggesting the importance of synergy between plasmids and ISs in mediating a multilayered hierarchical transfer of MDR and potentiating the emergence of MDR-hypervirulent clones. Conclusion: Our findings advance the current efforts to establish potential epidemiological links of MDR transmission between WWTP- and human/animal-associated bacteria. Plasmids play an important role in mediating the transfer of ARGs and the IS-associated ARGs that are carried by conjugative plasmids should be prioritized to tackle the spread of resistance. [MediaObject not available: see fulltext.]. © 2022, The Author(s). 
650 0 4 |a ampicillin 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Anti-Bacterial Agents 
650 0 4 |a antibiotic resistance 
650 0 4 |a antiinfective agent 
650 0 4 |a Article 
650 0 4 |a Bacteria 
650 0 4 |a bacterial genome 
650 0 4 |a bacterial virulence 
650 0 4 |a bacterium 
650 0 4 |a bacterium isolate 
650 0 4 |a bacterium isolation 
650 0 4 |a chloramphenicol 
650 0 4 |a Citrobacter portucalensis 
650 0 4 |a comparative genomics 
650 0 4 |a conjugative plasmid 
650 0 4 |a DNA extraction 
650 0 4 |a DNA sequencing 
650 0 4 |a DNA transfer 
650 0 4 |a ecological niche 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia dysenteriae 
650 0 4 |a Escherichia flexneri 
650 0 4 |a evolutionary adaptation 
650 0 4 |a gene insertion sequence 
650 0 4 |a genetic background 
650 0 4 |a genetics 
650 0 4 |a genome analysis 
650 0 4 |a genomic DNA 
650 0 4 |a Genomic epidemiology 
650 0 4 |a genomic surveillance 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a hierarchical clustering 
650 0 4 |a horizontal gene transfer 
650 0 4 |a Horizontal gene transfer 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a illumina sequencing 
650 0 4 |a Insertion sequences 
650 0 4 |a kanamycin 
650 0 4 |a Klebsiella pneumoniae 
650 0 4 |a klebsiella quasipneumoniae 
650 0 4 |a MDR 
650 0 4 |a multidrug resistant bacterium 
650 0 4 |a multilayered hierarchical transfer 
650 0 4 |a multilocus sequence typing 
650 0 4 |a Nanopore 
650 0 4 |a nanopore sequencing 
650 0 4 |a nonhuman 
650 0 4 |a pangenome 
650 0 4 |a phylogeny 
650 0 4 |a plasmid 
650 0 4 |a Plasmidome 
650 0 4 |a Plasmids 
650 0 4 |a population genomics 
650 0 4 |a prevalence 
650 0 4 |a Proteus mirabilis 
650 0 4 |a Raoultella ornithinolytica 
650 0 4 |a Shigella flexneri 
650 0 4 |a single nucleotide polymorphism 
650 0 4 |a tetracycline 
650 0 4 |a virulence factor 
650 0 4 |a waste water management 
650 0 4 |a waste water treatment plant 
650 0 4 |a water management 
650 0 4 |a Water Purification 
700 1 0 |a Břinda, K.  |e author 
700 1 0 |a Che, Y.  |e author 
700 1 0 |a Hanage, W.  |e author 
700 1 0 |a Xu, X.  |e author 
700 1 0 |a Yang, C.  |e author 
700 1 0 |a Yang, Y.  |e author 
700 1 0 |a Zhang, T.  |e author 
773 |t Microbiome