A Machine Learning Approach for Global Steering Control Moment Gyroscope Clusters

This paper addresses the problem of singularity avoidance for a 4-Control Moment Gyroscope (CMG) pyramid cluster, as used for the attitude control of a satellite using machine learning (ML) techniques. A data-set, generated using a heuristic algorithm, relates the initial gimbal configuration and th...

Full description

Bibliographic Details
Main Authors: Daramouskas, I. (Author), Kostopoulos, V. (Author), Lappas, V. (Author), Moulianitis, V.C (Author), Papakonstantinou, C. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02276nam a2200265Ia 4500
001 0.3390-aerospace9030164
008 220421s2022 CNT 000 0 und d
020 |a 22264310 (ISSN) 
245 1 0 |a A Machine Learning Approach for Global Steering Control Moment Gyroscope Clusters 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/aerospace9030164 
520 3 |a This paper addresses the problem of singularity avoidance for a 4-Control Moment Gyroscope (CMG) pyramid cluster, as used for the attitude control of a satellite using machine learning (ML) techniques. A data-set, generated using a heuristic algorithm, relates the initial gimbal configuration and the desired maneuver—inputs—to a number of null space motions the gimbals have to execute—output. Two ML techniques—Deep Neural Network (DNN) and Random Forest Classifier (RFC)—are utilized to predict the required null motion for trajectories that are not included in the training set. The principal advantage of this approach is the exploitation of global information gath-ered from the whole maneuver compared to conventional steering laws that consider only some local information, near the current gimbal configuration for optimization and are prone to local extrema. The data-set generation and the predictions of the ML systems can be made offline, so no further calculations are needed on board, providing the possibility to inspect the way the system responds to any commanded maneuver before its execution. The RFC technique demonstrates enhanced accuracy for the test data compared to the DNN, validating that it is possible to correctly predict the null motion even for maneuvers that are not included in the training data. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a control moment gyroscope cluster 
650 0 4 |a deep neural network 
650 0 4 |a global steering 
650 0 4 |a machine learning 
650 0 4 |a pyramid configuration 
650 0 4 |a random forest classifier 
650 0 4 |a spacecraft attitude control 
700 1 0 |a Daramouskas, I.  |e author 
700 1 0 |a Kostopoulos, V.  |e author 
700 1 0 |a Lappas, V.  |e author 
700 1 0 |a Moulianitis, V.C.  |e author 
700 1 0 |a Papakonstantinou, C.  |e author 
773 |t Aerospace