Harnessing the power of "favorites" lists for recommendation systems
This thesis proposes a novel recommendation approach to take advantage of the information available in user-created lists. Our approach assumes associations among any two items appearing in a list together. We consider two different ways to calculate the strength of item-item associations: frequen...
Main Author: | |
---|---|
Other Authors: | |
Language: | English en |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1828/2047 |