Modelo preditivo para perda de crédito e sua aplicação em decisão de spread

Métodos analíticos para concessão de crédito vêm apresentando enormes avanços nas últimas décadas, particularmente no que se refere a métodos estatísticos de classificação para identificar grupos de indivíduos com diferentes taxas de inadimplência. A maioria dos trabalhos existentes sugere decisões...

Full description

Bibliographic Details
Main Author: Mello, Joao Fernando Serrajordia Rocha de
Other Authors: Pereira, Carlos Alberto de Braganca
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2009
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27052009-174727/
Description
Summary:Métodos analíticos para concessão de crédito vêm apresentando enormes avanços nas últimas décadas, particularmente no que se refere a métodos estatísticos de classificação para identificar grupos de indivíduos com diferentes taxas de inadimplência. A maioria dos trabalhos existentes sugere decisões do tipo conceder o crédito ou não, considerando apenas de forma marginal o resultado esperado da operação. O presente trabalho tem o objetivo de propor um modelo de avaliação de risco de crédito mais complexo que os tradicionais modelos de Credit Scoring, que forneça uma perspectiva mais detalhada acerca do desempenho futuro de um contrato de crédito, e que vá além da classificação entre bom e mau pagador. Aliado a este ganho de informação na previsibilidade oferecida pelo modelo, também é objetivo ampliar o espaço de decisões do problema, saindo de uma resposta binária (como aceitar/rejeitar o crédito) para algo que responda à seguinte pergunta: qual é a taxa justa para cobrir determinado risco?. === Analytical methods for granting credit are presenting enormous advances in recent decades, particularly in the field of statistical methods of classification to identify groups of individuals with different rates of default. Most of the existing work suggests decisions of the type granting credit or not, regarding just marginally the expected outcome of the operation. This work aims to propose a model to evaluate credit risk with more complexity than the traditional \"Credit Scoring\" models, providing a more detailed view about the future performance of a credit agreement, which goes beyond the classification of good and bad payers. Coupled with this improvement of information offered by the model, it is also this works aim to expand the decision space of the problem, leaving a binary response (such as accept/reject the claim) to something that answers the following question: \"what is the fair rate to cover a given risk \".