Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores

Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matri...

Full description

Bibliographic Details
Main Author: Veneziani, Alexei Magalhães
Other Authors: Marchetti, Domingos Humberto Urbano
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2008
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/
id ndltd-usp.br-oai-teses.usp.br-tde-20052008-101058
record_format oai_dc
collection NDLTD
language pt
format Others
sources NDLTD
topic Asymptotic expansion
Distribuição dos autovalores
Engenvalues distribution
Expansão Assintótica
Matrizes aleatórias normais
Núcleo integral e reprodutor
Random normal matrices
Reproductor and integral Kernel
Universality
Universilidade
spellingShingle Asymptotic expansion
Distribuição dos autovalores
Engenvalues distribution
Expansão Assintótica
Matrizes aleatórias normais
Núcleo integral e reprodutor
Random normal matrices
Reproductor and integral Kernel
Universality
Universilidade
Veneziani, Alexei Magalhães
Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
description Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matrizes normais atribui, como na mecânica estatística, um peso de Boltzmann `e POT.-NF(`A IND.N´)´ a cada realização `A IND.N´ destas matrizes, onde F é uma função a valores reais invariante por transformações unitárias. Realizando uma mudança de variáveis (das variáveis de entrada para as variáveis espectrais), escrevemos a distribuição marginal conjunta dos autovalores `{`z IND.i´} POT.N´ `IND.i=1´, bem como a função de n-pontos correspondente a vários ensembles, como o determinante de um núcleo integral associado. A partir deste formalismo bem estabelecido na literatura, apresentaremos nesta tese dois tipos de resultados: Primeiramente, explorando a semelhança da distribuição conjunta dos autovalores a um problema variacional sobre as medidas de equilíbrio eletrostático de cargas sujeitas a um potencial externo V : C ? R (escolhendo F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), podemos aplicar a teoria de potenciais logarítmicos para obter a única medida de equilíbrio coincidente com a função de 1-ponto destes ensembles. Com base nesta teoria, propomos nesta tese um método de interpolação analítica capaz de projetar a medida de equilíbrio dos ensembles normais em medidas de equilíbrio dos ensembles hermitianos e unitários correspondentes. Ilustramos o procedimento com várias aplicações. O segundo tipo de resultados utiliza o método de ponto de sela ao nícleo integral da família de ensembles de matrizes normais com potenciais `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Analogamente ao que foi demonstrado em ensembles hermitianos por Deift, estabelecemos por intermédio desta expansão um conceito similar de universalidade para esta família, fazendo uso de mapas conformes e a teoria de espaços de Segal-Bargmann. Sobre o sentido de universalidade definido por G. Oas, mostramos que a afirmação de universalidade neste sentido por este autor é incorreta quando a cauda desta probabilidade é levada em conta. === A matrix `A IND.N´ of order N is normal if and only if it commutes with its adjoint. In the present thesis we investigate the eigenvalues statistics (in the complex plane) of ensembles of normal random matrices when their order N tends to infinite. The probability distribution function in the space of normal matrices attributes, as in statistical mechanics, a Boltzmann weight `e POT.-NF(`A IND.N´)´ at each matrix realization `A IND.N´, where F is a real-valued function invariant by unitary transformations. By performing a change of variables (from entry variables to spectral variables) we write the marginal joint distribution of eigenvalues {`z IND.i´} POT.N´ `IND.i=1´, as well as the n-points functions corresponding to several ensembles, as the determinant of an associated integral kernel. From this formalism well-established in the literature, we shall present in this thesis two types of results: Firstly, exploiting the similarity of joint distribution of eigenvalues to a variational problem on electrostatic equilibrium measures of charges subjected to an external potential V : C - > R (by choosing F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), we can apply the theory of logarithmic potentials to obtain the unique equilibrium measure coinciding with the 1-point function of these ensembles. Based on this theory, we propose in this thesis a method of analytical interpolation capable of projecting the equilibrium measure of normal ensembles in equilibrium measures of corresponding Hermitian and unitary ensembles. We give several applications of this procedure. The second type of results utilizes the saddle point method applied to integral kernel of a family of normal matrix ensembles with potentials `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Similarly to what has been shown in hermitian ensembles by Deift, we established by mean of this expansion a similar concept of universality for this family, making use of conformal maps and theory of Segal-Bargmann space. Concerning the universality defined by G. Oas, we show that the universality claimed by this author is incorrect when the tail of this probability is taking into account.
author2 Marchetti, Domingos Humberto Urbano
author_facet Marchetti, Domingos Humberto Urbano
Veneziani, Alexei Magalhães
author Veneziani, Alexei Magalhães
author_sort Veneziani, Alexei Magalhães
title Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
title_short Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
title_full Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
title_fullStr Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
title_full_unstemmed Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
title_sort ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2008
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/
work_keys_str_mv AT venezianialexeimagalhaes ensemblesdematrizesaleatoriasnormaisprojecaocomportamentoassintoticoeuniversalidadedosautovalores
AT venezianialexeimagalhaes randomnormalmatricesensemblesprojectionasymptoticsbehavioranduniversalityofugenvalues
_version_ 1719068200413429760
spelling ndltd-usp.br-oai-teses.usp.br-tde-20052008-1010582019-05-09T20:30:37Z Ensembles de matrizes aleatórias normais: projeção, comportamento assintótico e universalidade dos autovalores Random normal matrices ensembles: projection, asymptotics behavior and universality of ugenvalues Veneziani, Alexei Magalhães Asymptotic expansion Distribuição dos autovalores Engenvalues distribution Expansão Assintótica Matrizes aleatórias normais Núcleo integral e reprodutor Random normal matrices Reproductor and integral Kernel Universality Universilidade Uma matriz `A IND.N´ de ordem N ´e normal se e somente se comuta com sua adjunta. Nesta tese investigamos a estatística dos autovalores (no plano complexo) de ensembles de matrizes aleatórias normais quando a ordem N destas tende a infinito. A função distribuição de probabilidade no espaço das matrizes normais atribui, como na mecânica estatística, um peso de Boltzmann `e POT.-NF(`A IND.N´)´ a cada realização `A IND.N´ destas matrizes, onde F é uma função a valores reais invariante por transformações unitárias. Realizando uma mudança de variáveis (das variáveis de entrada para as variáveis espectrais), escrevemos a distribuição marginal conjunta dos autovalores `{`z IND.i´} POT.N´ `IND.i=1´, bem como a função de n-pontos correspondente a vários ensembles, como o determinante de um núcleo integral associado. A partir deste formalismo bem estabelecido na literatura, apresentaremos nesta tese dois tipos de resultados: Primeiramente, explorando a semelhança da distribuição conjunta dos autovalores a um problema variacional sobre as medidas de equilíbrio eletrostático de cargas sujeitas a um potencial externo V : C ? R (escolhendo F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), podemos aplicar a teoria de potenciais logarítmicos para obter a única medida de equilíbrio coincidente com a função de 1-ponto destes ensembles. Com base nesta teoria, propomos nesta tese um método de interpolação analítica capaz de projetar a medida de equilíbrio dos ensembles normais em medidas de equilíbrio dos ensembles hermitianos e unitários correspondentes. Ilustramos o procedimento com várias aplicações. O segundo tipo de resultados utiliza o método de ponto de sela ao nícleo integral da família de ensembles de matrizes normais com potenciais `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Analogamente ao que foi demonstrado em ensembles hermitianos por Deift, estabelecemos por intermédio desta expansão um conceito similar de universalidade para esta família, fazendo uso de mapas conformes e a teoria de espaços de Segal-Bargmann. Sobre o sentido de universalidade definido por G. Oas, mostramos que a afirmação de universalidade neste sentido por este autor é incorreta quando a cauda desta probabilidade é levada em conta. A matrix `A IND.N´ of order N is normal if and only if it commutes with its adjoint. In the present thesis we investigate the eigenvalues statistics (in the complex plane) of ensembles of normal random matrices when their order N tends to infinite. The probability distribution function in the space of normal matrices attributes, as in statistical mechanics, a Boltzmann weight `e POT.-NF(`A IND.N´)´ at each matrix realization `A IND.N´, where F is a real-valued function invariant by unitary transformations. By performing a change of variables (from entry variables to spectral variables) we write the marginal joint distribution of eigenvalues {`z IND.i´} POT.N´ `IND.i=1´, as well as the n-points functions corresponding to several ensembles, as the determinant of an associated integral kernel. From this formalism well-established in the literature, we shall present in this thesis two types of results: Firstly, exploiting the similarity of joint distribution of eigenvalues to a variational problem on electrostatic equilibrium measures of charges subjected to an external potential V : C - > R (by choosing F(`A IND.N´) = ```sigma´ POT.N´ IND.i´=1 V (`z IND.i´)), we can apply the theory of logarithmic potentials to obtain the unique equilibrium measure coinciding with the 1-point function of these ensembles. Based on this theory, we propose in this thesis a method of analytical interpolation capable of projecting the equilibrium measure of normal ensembles in equilibrium measures of corresponding Hermitian and unitary ensembles. We give several applications of this procedure. The second type of results utilizes the saddle point method applied to integral kernel of a family of normal matrix ensembles with potentials `V IND.`alfa´´ (z) = `|z| POT.`alfa´´ , z `PERTENCE A´ C e `alfa´ `PERTENCE A´ ]0,`INFINITO´[. Similarly to what has been shown in hermitian ensembles by Deift, we established by mean of this expansion a similar concept of universality for this family, making use of conformal maps and theory of Segal-Bargmann space. Concerning the universality defined by G. Oas, we show that the universality claimed by this author is incorrect when the tail of this probability is taking into account. Biblioteca Digitais de Teses e Dissertações da USP Marchetti, Domingos Humberto Urbano 2008-03-12 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20052008-101058/ pt Liberar o conteúdo para acesso público.