Limit orbits in real reductive lie algebras.
Let G be a real reductive group, X a semisimple element of the Lie algebra g of G. We define the limit set $$\lim\sb{t\rightarrow0\sp+}t {\bf G}\cdot X\ {:=}\ \{ Y\mid Y=\lim\sb{i\rightarrow\infty}t\sb{i}\cdot Ad(g\sb{i})\cdot X,\ g\sb{i}\ \in {\bf G},\ t\sb{i}\rightarrow0\sp+\}$$ The problem consid...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
University of Ottawa (Canada)
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10393/9602 http://dx.doi.org/10.20381/ruor-7875 |