Summary: | Afin de répondre aux demandes constantes de l’industrie micro-électronique pour la réduction des tailles des dispositifs électroniques, de nouvelles techniques de lithographie sont mises au point. Une de ces techniques est l’auto-assemblage dirigé des copolymères à blocs (DSA). Cette technique consiste à utiliser la capacité des copolymères à blocs à s’auto-assembler en nanodomaines (cylindres ou lamelles) pour former des motifs de type contact ou ligne / espace. En l’absence de motifs directionnels, les copolymères à blocs ne possèdent pas d’ordre à longue distance, nécessaire pour toute application type CMOS. Ainsi, deux approches différentes de DSA sont utilisées: la grapho-épitaxie, qui génère une orientation par guidage physique, et la chemo-épitaxie, qui génère une orientation par affinité chimique. Cette dernière permet plus de flexibilité lors de la conception des masques de lithographie puisque les zones actives sont définies à postériori par l’approche « cut last », et est de fait la plus recherchée aujourd’hui pour aligner les copolymères à blocs. Toutefois, les procédés de chemo-épitaxie actuels ont montré leurs limitations pour l’utilisation de copolymères à blocs de haute résolution dit high , dont la période est inférieure à 20 nm, due aux limitations des outils de lithographie conventionnelle utilisés en production.Dans cette thèse, un nouveau procédé de chemo-épitaxie, nommé ACE (Arkema-CEA) spécialement conçu pour l’intégration de copolymères à blocs high est présenté. Dans ce procédé, les guides de chemo-épitaxie sont formés en combinant la lithographie standard et le procédé de lithographie par espaceur. Une sous-couche neutre, permettant l’orientation perpendiculaire du copolymère à blocs, est dans un premier temps déposée entre les espaceurs. Après le retrait des espaceurs, une étape de greffage sélectif a lieu pour obtenir un guide affine. Dans le procédé ACE, la taille finale du guide n’est plus directement définie par lithographie mais elle est plutôt déterminée par la taille de l’espaceur, obtenue en contrôlant l’épaisseur de dépôt. Cette technique permet de s’affranchir des contraintes de la lithographie au niveau des hautes résolutions.Afin de démontrer la faisabilité du procédé ACE, la thèse est divisée en deux axes de recherches. Le premier axe consiste à valider les points critiques du procédé, à savoir le greffage sélectif du guide directionnel entre les motifs formés par la sous-couche neutre et le retrait des espaceurs. Une étude approfondie sur les différentes sous-couches polymères disponibles et les effets des procédés sur celles-ci est réalisée. Le second axe s’intéresse à l’alignement du copolymère à blocs par le procédé ACE. Des fenêtres de procédé permettant d’étudier la stabilité et la reproductibilité du procédé sont obtenues en mesurant la défectivité du copolymère à blocs en fonction de la commensurabilité des motifs de lithographie. L’influence des différents paramètres (conditions de recuit et d’épaisseur du copolymère à blocs, hauteur et CD des espaceurs, …) est étudiée afin d’optimiser le procédé mis en place.Au vu des essais réalisés, le procédé mis en place est un procédé hybride chemo-grapho-épitaxie : la combinaison des guides physiques et chimiques permet l’alignement à longue distance des copolymères à blocs. L’absence de topographie ou la modification de l’affinité chimique du guide entraine une absence ou une modification de l’alignement des blocs. L’optimisation des paramètres permet l’alignement des copolymères à blocs sur de longues distances (plusieurs dizaines de micromètres carré), qui pourront permettre la définition de zone active par l’approche « cut last ». === In order to offer a solution to constant micro-electronics fab requirements in terms of lithography resolution, new lithography approaches are under study. One of this technic consist of using Block Copolymer capabilities to self-assembled in micro-structures, forming patterns structures like contact (cylinders) and line / space (lamellae). In the absence of any constraint, block copolymer do not own a long range order, useful for any CMOS-type application. Thereby two technics are used to obtain a block alignment: the grapho-epitaxy which align the block copolymer thanks to a physical guide, and the chemo-epitaxy, which align block copolymer thanks to a chemical affinity. Chemo-epitaxy, contrary to graph-epitaxy, offers space saving by aligning the blocs all over the studied field. Today, it is the most used technic. However, the current lithography requirements lead to the integration of high block copolymers whose period are below 20 nm. With this dimension, the current chemo-epitaxy processes are not adapted anymore, due to the resolution limit of the standard lithography tools defining the guides.This thesis aims to introduce a new chemo-epitaxy process flow, called Process ACE,by using LETI 300mm process capability and Arkema’s block copolymer advanced materials. In this new process, chemo-epitaxy guides are formed by combining standard lithography and established spacer patterning process. Spacer patterning technique is an option which, thanks to its aggressive dimensions, allows the integration of high block copolymers. A neutral underlayer, allowing perpendicular bloc copolymer orientation is located between the spacers. After the spacer removal, a selective grafting takes place to obtain an affine guide for one of the block. The final guide size corresponds to the one of the spacer earlier processed.In order to validate the process feasibility the thesis is divided in two parts. The first part investigates the critical process steps, that is to say the affinity guide selective grafting between the patterns form by the neutral underlayer and the spacers removal, by means of an in-depth polymer underlayer study and the process effects on these one’s. The second part focuses on block copolymer alignment with process ACE. Process windows validating the process stability and reproducibility are obtained by measuring block copolymer defectivity as a function of the lithography patterns commensurability. The different parameters effect (block copolymer baking, spacer height and width) is studied in order to optimise the process set up.On the basis of the testis undertaken, the process set up is a hybrid chemo-grapho-epitaxy process. It allows block copolymer long range order thanks to physical and chemical guides involved at the underlayer – block copolymer interface all by allowing a full space occupation of the available space.
|