Génération de modeles compacts thermiques dynamiques de composants electroniques via les algorithmes genetiques

La simulation détaillée au niveau carte de ces nouveaux types de packages est quasiment impossible du fait de la limitation des moyens de calculs actuels. En outre, dans la plupart des cas de conception électronique, seule l’estimation des températures en quelques points est intéressante. Une étude...

Full description

Bibliographic Details
Main Author: Dia, Cheikh Tidiane
Other Authors: Paris 10
Language:fr
Published: 2015
Subjects:
600
Online Access:http://www.theses.fr/2015PA100172/document
Description
Summary:La simulation détaillée au niveau carte de ces nouveaux types de packages est quasiment impossible du fait de la limitation des moyens de calculs actuels. En outre, dans la plupart des cas de conception électronique, seule l’estimation des températures en quelques points est intéressante. Une étude détaillée au niveau composant n’est pas nécessairement pertinente. Il faut donc un compromis entre faisabilité et/ou rapidité des calculs et une précision sur les paramètres importants. Une alternative est de trouver des modèles comportementaux équivalents aux modèles détaillés, capable de reproduire son comportement thermique aux points cruciaux. C’est dans cette optique que le projet européen DELPHI (Development of libraries of physical models of electronic components for an integrated design environment) a été initié en 1993. L’objectif de ce projet était de pouvoir générer un modèle compact à partir d’un modèle détaillé d’un composant électronique. Celui-ci a ainsi abouti à une standardisation du processus de génération des modèles mis en oeuvre. Néanmoins, les avancées issues de ce projet sont limitées aux composants mono-puces et à leur comportement thermique en régime permanent. L’objectif de cette thèse est d’avoir une approche multi-échelle de la génération de modèles compacts et leur interaction avec la carte. La modélisation multi-échelle consiste à la génération de modèles mono-puces ou multi-puces et leur réutilisation éventuelle dans des systèmes plus complexes tels que le PCB ou les « System-In-packages ». === This thesis is dedicated to the generation of behavioral thermal model for electronic component having multiple active sensitive chips. This innovative study focuses on the necessary improvements of the concept of steady-state and dynamic compact model in order to elaborate pertinent and accurate modeling practical techniques. To help the electronic designer to early identify the overheated electronic components, the purpose is to generate simplified models, capable to mimic the thermal behavior of sophisticated detailed models. These simplified or compact models using well-known thermal resistances network replicate the thermal path from the most sensitive elements to the external package surfaces and enable to accurately predict their temperatures as well as the case heat flow rates. Preliminary evaluations performed on the popular, plastic Quad Flat-pack No lead package family showed that the simplest network definition, restricted to the heating source and two external surfaces, is always insufficient to properly characterize the thermal response of real device. So our development of steady-state compact thermal model (CTM) for electronic component is based on a process flow defined by the European project DELPHI which was revised by the presented work to address multi-chip components. DELPHI style compact thermal model presents an enlarged node number, especially for the component external surfaces which are divided in a set of relevant areas.