Développement de méthodes numériques pour la caractérisation des grandes structures tourbillonnaires dans les brûleurs aéronautiques : application aux systèmes d'injection multi-points

La réduction des émissions polluantes des turboréacteurs nécessite une plus grande maîtrise du dimensionnement du système d’injection du mélange air-carburant au sein de la chambre de combustion.L’objectif de la thèse est d’améliorer la compréhension de la dynamique des écoulements swirlés, rencontr...

Full description

Bibliographic Details
Main Author: Guedot, Lola
Other Authors: Rouen, INSA
Language:fr
en
Published: 2015
Subjects:
Online Access:http://www.theses.fr/2015ISAM0017/document
Description
Summary:La réduction des émissions polluantes des turboréacteurs nécessite une plus grande maîtrise du dimensionnement du système d’injection du mélange air-carburant au sein de la chambre de combustion.L’objectif de la thèse est d’améliorer la compréhension de la dynamique des écoulements swirlés, rencontrés dans les chambres aéronautiques. La simulation aux grandes échelles, qui exploite les super-calculateurs les plus puissants, est devenue un outil d’analyse incontournable. Cependant, la taille des simulations et le volume de données générées rendent difficile l’extraction des phénomènes à grande échelle. A cette fin, de nouvelles méthodes de post-traitement parallèles qui permettent d’accéder à l’évolution temporelle des structures tourbillonnaires dans des géométries complexes sont proposées.Ces méthodes sont appliquées à l’étude de la dynamique de flammes swirlées diphasiques dans lesquelles les structures cohérentes interagissent avec la zone réactive et le brouillard de gouttes. === The reduction of pollutant emissions of aeronautical devices requires to optimize the design of the injection systems in the combustion chamber. The objective of this work is to improve the understandingof the flow dynamics in swirl stabilized burners. Large Eddy Simulation has become a major tool for the analysis of such flows. The steady increase in computational power enables to perform high-fidelity simulations, that generates a large amount of data, making it difficult to extract relevant information regarding the large scale phenomena. To this aim, massively parallel post-processing methods, suited for complex geometries, were developed in order to extract large-scale structures in turbulent flows. These methods were applied to simulations of spray flames in swirl burners, to get a better insight of how the large scale structures interact with the flame topology and the spray dynamics.