Etude de nano-transistors à faible pente sous le seuil pour des applications très basse consommation

Le transistor à effet tunnel bande à bande (TFET) est une architecture PIN à grille capable d’obtenir une pente sous le seuil inférieure à 60mV/dec à température ambiante, ce qui représente un avantage par rapport au MOSFET dans le cas d’applications basse consommation. L’objectif de cette thèse est...

Full description

Bibliographic Details
Main Author: Villalon, Anthony
Other Authors: Grenoble
Language:fr
Published: 2014
Subjects:
620
Online Access:http://www.theses.fr/2014GRENT101/document
Description
Summary:Le transistor à effet tunnel bande à bande (TFET) est une architecture PIN à grille capable d’obtenir une pente sous le seuil inférieure à 60mV/dec à température ambiante, ce qui représente un avantage par rapport au MOSFET dans le cas d’applications basse consommation. L’objectif de cette thèse est d’étudier et de caractériser des TFETs fabriqués au CEA-LETI (sur substrats SOI avec les procédés standards CMOS), afin de comprendre et d’optimiser ces dispositifs. La première génération de TFETs a été réalisée en architecture planaire (FDSOI) et fournit une étude sur l’impact de l’hétérojonction canal source, de l’épaisseur du canal et de la température de recuit sur les performances. La seconde génération a été réalisée en architecture nanofil SiGe planaire, dont l’impact de la géométrie a été étudié en détail. Les mesures ont permis de valider l’injection par effet tunnel bande à bande, et les performances observées ont été comparées à la littérature et aux MOSFET. Par ailleurs, des caractérisations avancées ont également mené à une meilleure compréhension des caractéristiques de sortie courant-tension. Finalement, des mesures basse température nous avons confirmé la présence de défauts proches des jonctions (à l’origine des limitations de pente sous le seuil) et ainsi proposé des voies d’optimisation pour s’en affranchir. === Band to band tunneling field effect transistor (TFET) is a PIN-gated architecture able to reach sub 60mV/dec subthreshold slopes at room temperature, which is an advantage over MOSFET in low power applications. The objective of this thesis is to study and characterize TFETs fabricated in CEA-LETI using MOSFET SOI technology. The first generation of devices is realized on planar FDSOI technology, and studies the impact of source/channel heterojunction, channel thickness and annealing temperature on device performances. The second generation is planar SiGe nanowire architecture, with research focusing on the impact of the wire geometry. Through measurements we were able to prove the band to band tunneling injection, while the reported performances were compared with literature and with MOSFET. Furthermore, advanced characterizations led to a better understanding of the output characteristics. Through low temperature measurements we confirmed existence of defects close to the junctions (which cause slope degradation), as well as on which process steps to improve in the future.