In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)

>Magister Scientiae - MSc === P53 is one of the most important tumour suppressor proteins in the body which protects the cell against the tumourigenic effects of DNA damage by initiating processes such as apoptosis, senescence and cell cycle arrest. Regulation of p53 is key — so that the abovemen...

Full description

Bibliographic Details
Main Author: Jooste, Lauren Sarah
Other Authors: Pugh, David J.R.
Language:en
Published: University of the Western Cape 2016
Subjects:
Online Access:http://hdl.handle.net/11394/5051
id ndltd-netd.ac.za-oai-union.ndltd.org-uwc-oai-etd.uwc.ac.za-11394-5051
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-uwc-oai-etd.uwc.ac.za-11394-50512018-07-28T04:49:12Z In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6) Jooste, Lauren Sarah Pugh, David J.R. Cancer Tumour suppressor Protein In vitro Ubiquitination >Magister Scientiae - MSc P53 is one of the most important tumour suppressor proteins in the body which protects the cell against the tumourigenic effects of DNA damage by initiating processes such as apoptosis, senescence and cell cycle arrest. Regulation of p53 is key — so that the abovementioned processes are not initiated inappropriately. The principle negative regulator of p53 is Murine Double Minute 2 (MDM2), a RING finger-containing protein which catalyses the attachment of lysine48-linked poly-ubiquitin chains, targeting it for degradation by the 26S proteasome. It has been found to work in conjunction with the MDM2 homologue MDMX. Retinoblastoma Binding Protein 6 (RBBP6) is a RING finger-containing protein known to play a role in mRNA 3’-end processing, as well as interacting with p53 and another crucial tumour suppressor, pRb. It has previously been shown to cooperate with MDM2 in the ubiquitination and degradation of p53 in vivo and acts as a scaffold. The objectives of this project are to investigate the proposed role of RBBP6 in the MDM2-catalysed ubiquitination of p53 using a fully in vitro ubiquitination system. Due to the difficulty of expressing full length RBBP6 in bacteria, a shortened version, dubbed "R3" was used which includes the RING finger domain but excludes the domain identified in earlier studies as the p53-binding domain. Proteins required to set up the fully in vitro p53 ubiquitination assays – including E1 and E2 enzymes, MDM2, R3, p53 and ubiquitin - were all successfully expressed in bacteria. The active 26S proteasome was successfully purified out of human cell lysates using antibodies targeting the α2-subunit. Cloning, expression and purification results showed that p53, MDM2 and R3 were not very stable proteins to work with — with degradation being initiated almost immediately after expression and purification which progressed during the downstream processing of the proteins. Although levels of intact protein were not always high, they were sufficient for in vitro assays. MDM2 and GST-R3 were both capable of poly-ubiquitinating p53 independently in "partially in vitro" assays using human cell lysate. The fully in vitro ubiquitination of p53 using MDM2 and R3 was established based on the well-known MDM2/MDMX system. When acting together R3 and MDM2 was shown to produce poly-ubiquitination which is lysine-48 linked and recognised by the 26S proteasome leading to degradation. When the proteasome inhibitor MG132 was added, the poly-ubiquitinated p53 was rescued from degradation. R3 was also shown to successfully poly-ubiquitinate p53 independently of MDM2 and also interact with p53 in vitro. These results suggest R3 to be of the same order of importance as that of MDM2 — which is known to be the most important regulator of p53. It would also rule out the proposed model of RBBP6 functioning as a scaffold as it is able to poly-ubiquitinate p53 independent of MDM2. These results allow us to better understand the mechanism in which p53 is down-regulated by E3s. National Research Foundation (NRF) 2016-06-06T07:05:40Z 2016-06-06T07:05:40Z 2015 http://hdl.handle.net/11394/5051 en University of the Western Cape University of the Western Cape
collection NDLTD
language en
sources NDLTD
topic Cancer
Tumour suppressor
Protein
In vitro
Ubiquitination
spellingShingle Cancer
Tumour suppressor
Protein
In vitro
Ubiquitination
Jooste, Lauren Sarah
In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)
description >Magister Scientiae - MSc === P53 is one of the most important tumour suppressor proteins in the body which protects the cell against the tumourigenic effects of DNA damage by initiating processes such as apoptosis, senescence and cell cycle arrest. Regulation of p53 is key — so that the abovementioned processes are not initiated inappropriately. The principle negative regulator of p53 is Murine Double Minute 2 (MDM2), a RING finger-containing protein which catalyses the attachment of lysine48-linked poly-ubiquitin chains, targeting it for degradation by the 26S proteasome. It has been found to work in conjunction with the MDM2 homologue MDMX. Retinoblastoma Binding Protein 6 (RBBP6) is a RING finger-containing protein known to play a role in mRNA 3’-end processing, as well as interacting with p53 and another crucial tumour suppressor, pRb. It has previously been shown to cooperate with MDM2 in the ubiquitination and degradation of p53 in vivo and acts as a scaffold. The objectives of this project are to investigate the proposed role of RBBP6 in the MDM2-catalysed ubiquitination of p53 using a fully in vitro ubiquitination system. Due to the difficulty of expressing full length RBBP6 in bacteria, a shortened version, dubbed "R3" was used which includes the RING finger domain but excludes the domain identified in earlier studies as the p53-binding domain. Proteins required to set up the fully in vitro p53 ubiquitination assays – including E1 and E2 enzymes, MDM2, R3, p53 and ubiquitin - were all successfully expressed in bacteria. The active 26S proteasome was successfully purified out of human cell lysates using antibodies targeting the α2-subunit. Cloning, expression and purification results showed that p53, MDM2 and R3 were not very stable proteins to work with — with degradation being initiated almost immediately after expression and purification which progressed during the downstream processing of the proteins. Although levels of intact protein were not always high, they were sufficient for in vitro assays. MDM2 and GST-R3 were both capable of poly-ubiquitinating p53 independently in "partially in vitro" assays using human cell lysate. The fully in vitro ubiquitination of p53 using MDM2 and R3 was established based on the well-known MDM2/MDMX system. When acting together R3 and MDM2 was shown to produce poly-ubiquitination which is lysine-48 linked and recognised by the 26S proteasome leading to degradation. When the proteasome inhibitor MG132 was added, the poly-ubiquitinated p53 was rescued from degradation. R3 was also shown to successfully poly-ubiquitinate p53 independently of MDM2 and also interact with p53 in vitro. These results suggest R3 to be of the same order of importance as that of MDM2 — which is known to be the most important regulator of p53. It would also rule out the proposed model of RBBP6 functioning as a scaffold as it is able to poly-ubiquitinate p53 independent of MDM2. These results allow us to better understand the mechanism in which p53 is down-regulated by E3s. === National Research Foundation (NRF)
author2 Pugh, David J.R.
author_facet Pugh, David J.R.
Jooste, Lauren Sarah
author Jooste, Lauren Sarah
author_sort Jooste, Lauren Sarah
title In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)
title_short In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)
title_full In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)
title_fullStr In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)
title_full_unstemmed In vitro investigation of the ubiquitination and degradation of p53 by Murine Double Minute 2 (MDM2) and Retinoblastoma Binding Protein 6 (RBBP6)
title_sort in vitro investigation of the ubiquitination and degradation of p53 by murine double minute 2 (mdm2) and retinoblastoma binding protein 6 (rbbp6)
publisher University of the Western Cape
publishDate 2016
url http://hdl.handle.net/11394/5051
work_keys_str_mv AT joostelaurensarah invitroinvestigationoftheubiquitinationanddegradationofp53bymurinedoubleminute2mdm2andretinoblastomabindingprotein6rbbp6
_version_ 1718715007813812224