In vitro signal transduction mechanism exerted by 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-3-ol-17-one in combination with dichloroacetic acid on breast adenocarcinoma (MCF-7) and breast non-tumorigenic (MCF-12A) cells
Most cancer cells rely on aerobic glycolysis to support the mitochondrial oxidative phosphorylation system (OXPHOS). The persistent oxic-anoxic cycle exerts selection pressures which lead to constitutive activation of glycolysis even in the presence of abundant oxygen. Expression of hypoxia-inducibl...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
University of Pretoria
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/2263/43251 Stander, XX 2014, In vitro signal transduction mechanism exerted by 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-3-ol-17-one in combination with dichloroacetic acid on breast adenocarcinoma (MCF-7) and breast non-tumorigenic (MCF-12A) cells, PhD Thesis, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/43251> |
Internet
http://hdl.handle.net/2263/43251Stander, XX 2014, In vitro signal transduction mechanism exerted by 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-3-ol-17-one in combination with dichloroacetic acid on breast adenocarcinoma (MCF-7) and breast non-tumorigenic (MCF-12A) cells, PhD Thesis, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/43251>