Structure from motion estimation using a nonlinear Kalman filter

Thesis (MScEng)--University of Stellenbosch, 2002. === ENGLISH ABSTRACT: Structure from Motion is defined as the problem of extracting the 3d motion of a camera moving through a scene, as well as the 3d structure of the scene, from the image sequence produced by the camera over time. Several meth...

Full description

Bibliographic Details
Main Author: Venter, Chris (Christian Johannes)
Other Authors: Herbst, B. M.
Format: Others
Language:en_ZA
Published: Stellenbosch : Stellenbosch University 2012
Subjects:
Online Access:http://hdl.handle.net/10019.1/53071
id ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-53071
record_format oai_dc
spelling ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-530712016-01-29T04:02:59Z Structure from motion estimation using a nonlinear Kalman filter Venter, Chris (Christian Johannes) Herbst, B. M. Lourens, J. G. Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering. Kalman filtering Computer vision Image processing Dissertations -- Electronic engineering Theses -- Electronic engineering Thesis (MScEng)--University of Stellenbosch, 2002. ENGLISH ABSTRACT: Structure from Motion is defined as the problem of extracting the 3d motion of a camera moving through a scene, as well as the 3d structure of the scene, from the image sequence produced by the camera over time. Several methods based on the Kalman filter have been proposed in the past, mostly based on the Extended Kalman filter. We propose an algorithm based on the dual Unscented Kalman filter to estimate the structure and motion of an object under perspective projection. It is shown that the algorithm is stable and accurate under synthetic as well as real-world conditions. AFRIKAANSE OPSOMMING: Struktuur vanuit Beweging is 'n rekenaar-visie probleem waarin die 3d beweging van 'n kamera deur 'n ruimte, asook die 3d struktuur van die ruimte, bepaal moet word slegs vanuit die 2d beelde in die beeldreeks wat deur die kamera geneem word. 'n Verskeie reeks oplossings, gebaseer op die Kalman filter, is reeds voorgestelom die probleem op te los. Meeste van die oplossings implementeer die "Extended Kalman filter", of EKF. Ons stel 'n algoritme voor, gebaseer op 'n nuwe nie-lineêre benadering tot die Kalman filter, die sogenaamde "Unscented Kalman filter", of UKF. Hierdie algoritme bepaal die struktuur en beweging onder 'n perspektief-projeksie kamera. Daar word getoon dat die algoritme stabiel en akkuraat funskioneer onder sintetiese sowel as reële toevoer. 2012-08-27T11:35:17Z 2012-08-27T11:35:17Z 2002-12 Thesis http://hdl.handle.net/10019.1/53071 en_ZA Stellenbosch University 80 p. : ill. Stellenbosch : Stellenbosch University
collection NDLTD
language en_ZA
format Others
sources NDLTD
topic Kalman filtering
Computer vision
Image processing
Dissertations -- Electronic engineering
Theses -- Electronic engineering
spellingShingle Kalman filtering
Computer vision
Image processing
Dissertations -- Electronic engineering
Theses -- Electronic engineering
Venter, Chris (Christian Johannes)
Structure from motion estimation using a nonlinear Kalman filter
description Thesis (MScEng)--University of Stellenbosch, 2002. === ENGLISH ABSTRACT: Structure from Motion is defined as the problem of extracting the 3d motion of a camera moving through a scene, as well as the 3d structure of the scene, from the image sequence produced by the camera over time. Several methods based on the Kalman filter have been proposed in the past, mostly based on the Extended Kalman filter. We propose an algorithm based on the dual Unscented Kalman filter to estimate the structure and motion of an object under perspective projection. It is shown that the algorithm is stable and accurate under synthetic as well as real-world conditions. === AFRIKAANSE OPSOMMING: Struktuur vanuit Beweging is 'n rekenaar-visie probleem waarin die 3d beweging van 'n kamera deur 'n ruimte, asook die 3d struktuur van die ruimte, bepaal moet word slegs vanuit die 2d beelde in die beeldreeks wat deur die kamera geneem word. 'n Verskeie reeks oplossings, gebaseer op die Kalman filter, is reeds voorgestelom die probleem op te los. Meeste van die oplossings implementeer die "Extended Kalman filter", of EKF. Ons stel 'n algoritme voor, gebaseer op 'n nuwe nie-lineêre benadering tot die Kalman filter, die sogenaamde "Unscented Kalman filter", of UKF. Hierdie algoritme bepaal die struktuur en beweging onder 'n perspektief-projeksie kamera. Daar word getoon dat die algoritme stabiel en akkuraat funskioneer onder sintetiese sowel as reële toevoer.
author2 Herbst, B. M.
author_facet Herbst, B. M.
Venter, Chris (Christian Johannes)
author Venter, Chris (Christian Johannes)
author_sort Venter, Chris (Christian Johannes)
title Structure from motion estimation using a nonlinear Kalman filter
title_short Structure from motion estimation using a nonlinear Kalman filter
title_full Structure from motion estimation using a nonlinear Kalman filter
title_fullStr Structure from motion estimation using a nonlinear Kalman filter
title_full_unstemmed Structure from motion estimation using a nonlinear Kalman filter
title_sort structure from motion estimation using a nonlinear kalman filter
publisher Stellenbosch : Stellenbosch University
publishDate 2012
url http://hdl.handle.net/10019.1/53071
work_keys_str_mv AT venterchrischristianjohannes structurefrommotionestimationusinganonlinearkalmanfilter
_version_ 1718164181247590400