Bayesian Neural Networks in Data-Intensive High Energy Physics Applications
This dissertation studies a graphical processing unit (GPU) construction of Bayesian neural networks (BNNs) using large training data sets. The goal is to create a program for the mapping of phenomenological Minimal Supersymmetric Standard Model (pMSSM) parameters to their predictions. This would al...
Other Authors: | |
---|---|
Format: | Others |
Language: | English English |
Published: |
Florida State University
|
Subjects: | |
Online Access: | http://purl.flvc.org/fsu/fd/FSU_migr_etd-8867 |