Automatic model selection on local Gaussian structures with priors: comparative investigations and applications.

作為機器學習領域中的一個重要課題,模型選擇旨在給定有限樣本的情況下、恰當地確定模型的複雜度。自動模型選擇是指一類快速有效的模型選擇方法,它們以一個足夠大的模型複雜度作為初始,在學習過程中有一種內在機制能夠驅使冗餘結構自動地變為不起作用、從而可以剔除。爲了輔助自動模型選擇的進行,模型的參數通常被假設帶有先驗。對於考慮先驗的各種自動模型選擇方法,已有工作中尚缺乏系統性的比較研究。本篇論文著眼於具有局部高斯結構的模型,進行了系統性的比較分析。 === 具體而言,本文比較了三種典型的自動模型選擇方法的優劣勢,它們分別為變分貝葉斯(Variational Bayesian),最小信息長度(Minimum...

Full description

Bibliographic Details
Other Authors: Shi, Lei
Format: Others
Language:English
Chinese
Published: 2012
Subjects:
Online Access:http://library.cuhk.edu.hk/record=b5549417
http://repository.lib.cuhk.edu.hk/en/item/cuhk-327970