Random Walks and Induced Dirichlet Forms on Self-similar Sets
眾所週知,一個自相似集K 可等同於它關聯的擴充樹(augmented tree) (X,E) 的雙曲邊界(hyperbolic boundary) ∂HX。在本文裡,我們將上述思路推 廣到緊的α 正則度量測度空間(K,ρ,µ),併研究一類在(X,E) 上返比(return ratio) 為λ ∈ (0,1) 的可逆(reversible) 隨機游動。我們證明Martin 邊界可以與 ∂HX 及K 等同,並且游動的首中分佈(hitting distribution) 即為測度µ。 通過這一設定結合Silverstein 的方法,我們能夠得到對Martin 核(Martin kernel) 和Na...
Other Authors: | Kong, Shilei (author.) |
---|---|
Format: | Others |
Language: | English Chinese |
Published: |
2017
|
Subjects: | |
Online Access: | http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292202 |
Similar Items
-
Regularization of Dirichlet forms
by: Chang Chorng-Rong, et al.
Published: (1998) -
Anomaly Detection Using Regulated Random Walk and Similarity Degree
by: Chen, Po-Lung, et al.
Published: (2019) -
Self-similar sets and Martin boundaries.
Published: (2008) -
Geometry of Self-Similar Sets
by: Roinestad, Kristine A.
Published: (2014) -
Smooth sets and two problems in the Dirichlet space
by: Seco Forsnacke, Daniel
Published: (2013)