A geometric construction of a Calabi quasimorphism on projective space

We use the rotation numbers defined by Théret in [T] to construct a quasimorphism on the universal cover of the Hamiltonian group of CP^n. We also show that this quasimorphism agrees with the Calabi invariant for isotopies that are supported in displaceable subsets of CP^n.

Bibliographic Details
Main Author: Carneiro, Andre R.
Language:English
Published: 2013
Subjects:
Online Access:https://doi.org/10.7916/D8N29W9T