Distinct Feature Learning and Nonlinear Variation Pattern Discovery Using Regularized Autoencoders
abstract: Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear varia...
Other Authors: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/2286/R.I.38620 |