Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation
BACKGROUND:Aquaporin-1 (AQP1) functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C-) terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-...
Main Authors: | , |
---|---|
Other Authors: | |
Language: | en |
Published: |
BioMed Central
2003
|
Online Access: | BMC Physiology 2003, 3:12 http://www.biomedcentral.com/1472-6793/3/12 http://hdl.handle.net/10150/610075 http://arizona.openrepository.com/arizona/handle/10150/610075 |
Summary: | BACKGROUND:Aquaporin-1 (AQP1) functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C-) terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-selective phosphodiesterases.RESULTS:Voltage clamp analyses of human AQP1 channels expressed in Xenopus oocytes demonstrated that the nitric oxide donor, sodium nitroprusside (SNP === 3-14 mM) activated the ionic conductance response in a dose-dependent manner. Block of soluble guanylate cyclase prevented the response. Enzyme immunoassays confirmed a linear dose-dependent relationship between SNP and the resulting intracellular cGMP levels (up to 1700 fmol cGMP /oocyte at 14 mM SNP). Results here are the first to show that the efficacy of ion channel activation is decreased by mutations of AQP1 at conserved residues in the C-terminal domain (aspartate D237 and lysine K243).CONCLUSIONS:These data support the idea that the limited amino acid sequence similarities found between three diverse classes of cGMP-binding proteins are significant to the function of AQP1 as a cGMP-gated ion channel, and provide direct evidence for the involvement of the AQP1 C-terminal domain in cGMP-mediated ion channel activation. |
---|