Evaluation of Sustainable Agriculture Systems in Central Mexico

In Mexico, corn (Zea mays L.) is the most important crop (59% of its agriculture land) and the primary source of sediment yield. This study looks for alternatives to maintain corn productivity by means of sustainable soil and water conservation practices at central Mexico. In order to understand bro...

Full description

Bibliographic Details
Main Author: Fernandez-Reynoso, Demetrio Salvador
Other Authors: Zaimes, George
Language:EN
Published: The University of Arizona. 2008
Subjects:
Online Access:http://hdl.handle.net/10150/195783
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-195783
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-1957832015-10-23T04:43:19Z Evaluation of Sustainable Agriculture Systems in Central Mexico Fernandez-Reynoso, Demetrio Salvador Zaimes, George Guertin, D. Phillip Lopes, Vicente L. Hawkins, Richard H. Zaimes, George Wissler, Craig EPIC model Central Mexico soil conservation corn productivity corn BMPs In Mexico, corn (Zea mays L.) is the most important crop (59% of its agriculture land) and the primary source of sediment yield. This study looks for alternatives to maintain corn productivity by means of sustainable soil and water conservation practices at central Mexico. In order to understand broad tendencies between soil erosion and crop productivity in the region, the EPIC (Erosion Productivity Impact Calculator) model was applied in the Texcoco's district as follows:1) Calibrate the model using 352 experimental corn plots established between 1972 and 1992 in 36 rural communities.2) Validate the model on a spatial basis, using GIS tools, by means of historic corn yields.3) Identify the most vulnerable areas where corn productivity is being affected by soil erosion.4) Analyze the relationship between soil erosion and crop productivity, over a 100 years of simulation, comparing the Current Management (CM) and the Recommended Management (RM) by governmental institutions.5) Evaluate the most feasible soil and water conservation practices for the region.From the calibration process, it was concluded that the EPIC model, under a wide range of environmental conditions, simulates very good corn yield (r2 between 0.88 and 0.90), annual runoff (r2=0.98), and annual sediment production (r2=0.96).Base on the official environmental inputs available in the region, the EPIC model can assess only a moderately strong relationship (r2=0.58) between the official historical crop records and the simulated ones.Comparison between CM and RM shows that the average crop yield in the region can be increased by 32.6% if RM were followed. Under the CM, the loss of soil fertility in the district reduces corn productivity by 3% over a hundred years. At least 50.0% of the region's agricultural area needs soil conservation practices, mainly on areas with slopes over 5%. If it is decided to grow corn under conventional till in such areas it is recommended to construct bench terraces in order to maintain soil erosion below 20 t/ha/yr. Corn under no till, besides control erosion, can also increase grain productivity by at least 40% (0.6 t/ha) by combining contouring, mulching, and manures. 2008 text Electronic Dissertation http://hdl.handle.net/10150/195783 659749650 2648 EN Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.
collection NDLTD
language EN
sources NDLTD
topic EPIC model
Central Mexico
soil conservation
corn productivity
corn BMPs
spellingShingle EPIC model
Central Mexico
soil conservation
corn productivity
corn BMPs
Fernandez-Reynoso, Demetrio Salvador
Evaluation of Sustainable Agriculture Systems in Central Mexico
description In Mexico, corn (Zea mays L.) is the most important crop (59% of its agriculture land) and the primary source of sediment yield. This study looks for alternatives to maintain corn productivity by means of sustainable soil and water conservation practices at central Mexico. In order to understand broad tendencies between soil erosion and crop productivity in the region, the EPIC (Erosion Productivity Impact Calculator) model was applied in the Texcoco's district as follows:1) Calibrate the model using 352 experimental corn plots established between 1972 and 1992 in 36 rural communities.2) Validate the model on a spatial basis, using GIS tools, by means of historic corn yields.3) Identify the most vulnerable areas where corn productivity is being affected by soil erosion.4) Analyze the relationship between soil erosion and crop productivity, over a 100 years of simulation, comparing the Current Management (CM) and the Recommended Management (RM) by governmental institutions.5) Evaluate the most feasible soil and water conservation practices for the region.From the calibration process, it was concluded that the EPIC model, under a wide range of environmental conditions, simulates very good corn yield (r2 between 0.88 and 0.90), annual runoff (r2=0.98), and annual sediment production (r2=0.96).Base on the official environmental inputs available in the region, the EPIC model can assess only a moderately strong relationship (r2=0.58) between the official historical crop records and the simulated ones.Comparison between CM and RM shows that the average crop yield in the region can be increased by 32.6% if RM were followed. Under the CM, the loss of soil fertility in the district reduces corn productivity by 3% over a hundred years. At least 50.0% of the region's agricultural area needs soil conservation practices, mainly on areas with slopes over 5%. If it is decided to grow corn under conventional till in such areas it is recommended to construct bench terraces in order to maintain soil erosion below 20 t/ha/yr. Corn under no till, besides control erosion, can also increase grain productivity by at least 40% (0.6 t/ha) by combining contouring, mulching, and manures.
author2 Zaimes, George
author_facet Zaimes, George
Fernandez-Reynoso, Demetrio Salvador
author Fernandez-Reynoso, Demetrio Salvador
author_sort Fernandez-Reynoso, Demetrio Salvador
title Evaluation of Sustainable Agriculture Systems in Central Mexico
title_short Evaluation of Sustainable Agriculture Systems in Central Mexico
title_full Evaluation of Sustainable Agriculture Systems in Central Mexico
title_fullStr Evaluation of Sustainable Agriculture Systems in Central Mexico
title_full_unstemmed Evaluation of Sustainable Agriculture Systems in Central Mexico
title_sort evaluation of sustainable agriculture systems in central mexico
publisher The University of Arizona.
publishDate 2008
url http://hdl.handle.net/10150/195783
work_keys_str_mv AT fernandezreynosodemetriosalvador evaluationofsustainableagriculturesystemsincentralmexico
_version_ 1718099672810127360