On radical extensions and radical towers.

Let K/F be a separable extension. (i) If K = F(α) with αⁿ ∈ F for some n, K/F is said to be a radical extension. (ii) If there exists a sequence of fields F = F₀ ⊆ F₁ ⊆ ... ⊆ F(s) = K so that Fᵢ₊₁ = Fᵢ(αᵢ) with αᵢⁿ⁽ⁱ⁾ ∈ Fᵢ for some nᵢ ∈ N, charF ∧nᵢ for every i, and [Fᵢ₊₁ : Fᵢ] = nᵢ, K/F is said to...

Full description

Bibliographic Details
Main Author: Barrera Mora, Jose Felix Fernando.
Other Authors: Velez, William
Language:en
Published: The University of Arizona. 1989
Subjects:
Online Access:http://hdl.handle.net/10150/184833