Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal

Heat shock protein 90 (HSP90) is a molecular chaperone protein that protects proteins from degradation, repairs damaged proteins, and assists proteins in carrying out their functions. HSP90 has hundreds of clients, many of which are inflammatory signaling kinases. The mechanism by which HSP90 enable...

Full description

Bibliographic Details
Main Author: Shimp, Samuel Kline
Other Authors: Biomedical Engineering
Format: Others
Language:en_US
Published: Virginia Tech 2017
Subjects:
Online Access:http://hdl.handle.net/10919/77080
http://scholar.lib.vt.edu/theses/available/etd-05142012-164452/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-77080
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-770802021-06-23T05:28:46Z Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal Shimp, Samuel Kline Biomedical Engineering Rylander, M. Nichole Caudell, David L. Achenie, Luke E. K. Lee, Yong Woo Reilly, Christopher M. inflammation heat shock protein 90 computational models geldanamycin 17-DMAG nuclear factor-κB Heat shock protein 90 (HSP90) is a molecular chaperone protein that protects proteins from degradation, repairs damaged proteins, and assists proteins in carrying out their functions. HSP90 has hundreds of clients, many of which are inflammatory signaling kinases. The mechanism by which HSP90 enables inflammatory pathways is an active area of investigation. The HSP90 inhibitors such as geldanamycin (GA) and its derivative 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) have been shown to reduce inflammation. It was hypothesized that inhibiting HSP90 would reduce inflammatory signal cascade levels. To test this, J774 mouse macrophage cells were treated with 17-DMAG and immune-stimulated with lipopolysaccharide (LPS). 17-DMAG treatment reduced nitric oxide (NO) production and the expression of pro-inflammatory cytokines interleukin (IL)-6, IL-12, and TNF-α. Inhibition of HSP90 also prevented nuclear translocation of NF-κB. To investigate the anti-inflammatory effects of HSP90 inhibition in vivo, MRL/lpr lupus mice were administered 5 mg/kg 17-DMAG for six weeks via intraperitoneal injection. Mice treated with 17-DMAG were found to have reduced proteinuria and reduced splenomegaly. Flow cytometric analysis of splenocytes showed that 17-DMAG decreased double negative T (DNT) cells. Renal expression of HSP90 was also measured and found to be increased in MRL/lpr mice that did not receive 17-DMAG. The mechanistic interactions between HSP90 and the pro-inflammatory nuclear factor-κB (NF-κB) pathway were studied and a computational model was developed. The model predicts cellular response of inhibitor of κB kinase (IKK) activation and NF-κB activation to LPS stimulation. Model parameters were fit to IKK activation data. Parameter sensitivity was assessed through simulation studies and showed a strong dependence on IKK-HSP90 binding. The model also accounts for the effect of a general HSP90 inhibitor to disrupt the IKK-HSP90 interaction for reduced activation of NF-κB. Model simulations were validated with experimental data. In conclusion, HSP90 facilitates inflammation through multiple signal pathways including Akt and IKK. Inhibition of HSP90 by 17-DMAG reduced disease in the MRL/lpr lupus mouse model. A computational model supported the hypothesis that HSP90 is required for IKK to activate the NF-κB pathway. Taken together, HSP90 is a prime target for therapeutic regulation of many inflammatory processes and warrants further study to understand its mechanism of regulating cell signaling cascades. Ph. D. 2017-04-06T15:42:30Z 2017-04-06T15:42:30Z 2012-04-30 2012-05-14 2016-10-18 2012-05-30 Dissertation Text etd-05142012-164452 http://hdl.handle.net/10919/77080 http://scholar.lib.vt.edu/theses/available/etd-05142012-164452/ en_US In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf application/pdf Virginia Tech
collection NDLTD
language en_US
format Others
sources NDLTD
topic inflammation
heat shock protein 90
computational models
geldanamycin
17-DMAG
nuclear factor-κB
spellingShingle inflammation
heat shock protein 90
computational models
geldanamycin
17-DMAG
nuclear factor-κB
Shimp, Samuel Kline
Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal
description Heat shock protein 90 (HSP90) is a molecular chaperone protein that protects proteins from degradation, repairs damaged proteins, and assists proteins in carrying out their functions. HSP90 has hundreds of clients, many of which are inflammatory signaling kinases. The mechanism by which HSP90 enables inflammatory pathways is an active area of investigation. The HSP90 inhibitors such as geldanamycin (GA) and its derivative 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) have been shown to reduce inflammation. It was hypothesized that inhibiting HSP90 would reduce inflammatory signal cascade levels. To test this, J774 mouse macrophage cells were treated with 17-DMAG and immune-stimulated with lipopolysaccharide (LPS). 17-DMAG treatment reduced nitric oxide (NO) production and the expression of pro-inflammatory cytokines interleukin (IL)-6, IL-12, and TNF-α. Inhibition of HSP90 also prevented nuclear translocation of NF-κB. To investigate the anti-inflammatory effects of HSP90 inhibition in vivo, MRL/lpr lupus mice were administered 5 mg/kg 17-DMAG for six weeks via intraperitoneal injection. Mice treated with 17-DMAG were found to have reduced proteinuria and reduced splenomegaly. Flow cytometric analysis of splenocytes showed that 17-DMAG decreased double negative T (DNT) cells. Renal expression of HSP90 was also measured and found to be increased in MRL/lpr mice that did not receive 17-DMAG. The mechanistic interactions between HSP90 and the pro-inflammatory nuclear factor-κB (NF-κB) pathway were studied and a computational model was developed. The model predicts cellular response of inhibitor of κB kinase (IKK) activation and NF-κB activation to LPS stimulation. Model parameters were fit to IKK activation data. Parameter sensitivity was assessed through simulation studies and showed a strong dependence on IKK-HSP90 binding. The model also accounts for the effect of a general HSP90 inhibitor to disrupt the IKK-HSP90 interaction for reduced activation of NF-κB. Model simulations were validated with experimental data. In conclusion, HSP90 facilitates inflammation through multiple signal pathways including Akt and IKK. Inhibition of HSP90 by 17-DMAG reduced disease in the MRL/lpr lupus mouse model. A computational model supported the hypothesis that HSP90 is required for IKK to activate the NF-κB pathway. Taken together, HSP90 is a prime target for therapeutic regulation of many inflammatory processes and warrants further study to understand its mechanism of regulating cell signaling cascades. === Ph. D.
author2 Biomedical Engineering
author_facet Biomedical Engineering
Shimp, Samuel Kline
author Shimp, Samuel Kline
author_sort Shimp, Samuel Kline
title Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal
title_short Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal
title_full Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal
title_fullStr Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal
title_full_unstemmed Inhibition of Heat Shock Protein 90 Reduces Inflammatory Signal Transduction in Murine J774 Macrophage Cells and Lessens Disease in Autoimmune MRL/lpr Mice: What in vitro, in vivo, and in silico Models Reveal
title_sort inhibition of heat shock protein 90 reduces inflammatory signal transduction in murine j774 macrophage cells and lessens disease in autoimmune mrl/lpr mice: what in vitro, in vivo, and in silico models reveal
publisher Virginia Tech
publishDate 2017
url http://hdl.handle.net/10919/77080
http://scholar.lib.vt.edu/theses/available/etd-05142012-164452/
work_keys_str_mv AT shimpsamuelkline inhibitionofheatshockprotein90reducesinflammatorysignaltransductioninmurinej774macrophagecellsandlessensdiseaseinautoimmunemrllprmicewhatinvitroinvivoandinsilicomodelsreveal
_version_ 1719412245519138816