Lp norm estimation procedures and an L1 norm algorithm for unconstrained and constrained estimation for linear models
When the distribution of the errors in a linear regression model departs from normality, the method of least squares seems to yield relatively poor estimates of the coefficients. One alternative approach to least squares which has received a great deal of attention of late is minimum L<sub>p&l...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
Virginia Polytechnic Institute and State University
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/53627 |