Exploiting data parallelism in artificial neural networks with Haskell
Functional parallel programming techniques for feed-forward artificial neural networks trained using backpropagation learning are analyzed. In particular, the Data Parallel Haskell extension to the Glasgow Haskell Compiler is considered as a tool for achieving data parallelism. We find much potential...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/2152/ETD-UT-2009-08-280 |