Learning with Markov logic networks : transfer learning, structure learning, and an application to Web query disambiguation
Traditionally, machine learning algorithms assume that training data is provided as a set of independent instances, each of which can be described as a feature vector. In contrast, many domains of interest are inherently multi-relational, consisting of entities connected by a rich set of relations....
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/2152/10574 |