Design and Synthesis of Inhibitors Targeting the Hepatitis C Virus NS3 Protease : Focus on C-Terminal Acyl Sulfonamides

Hepatitis C is a global health problem that affects approximately 120–180 million people. This viral infection causes serious liver diseases and the therapy available suffers from low efficiency and severe side effects. Consequently, there is a huge unmet medical need for new therapeutic agents to c...

Full description

Bibliographic Details
Main Author: Rönn, Robert
Format: Doctoral Thesis
Language:English
Published: Uppsala universitet, Institutionen för läkemedelskemi 2007
Subjects:
HCV
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7814
http://nbn-resolving.de/urn:isbn:978-91-554-6862-0
Description
Summary:Hepatitis C is a global health problem that affects approximately 120–180 million people. This viral infection causes serious liver diseases and the therapy available suffers from low efficiency and severe side effects. Consequently, there is a huge unmet medical need for new therapeutic agents to combat the hepatitis C virus (HCV). Inhibition of the viral NS3 protease has recently emerged as a promising approach to defeat this infection, and the first HCV NS3 protease inhibitors have now entered clinical trials. In this project, several novel HCV NS3 protease inhibitors have been designed, synthesized and biochemically evaluated. Inhibitors with various P1 C-terminal functional groups intended as potential bioisosteres to the carboxylic acid found in product-based inhibitors have been revealed. Special focus has been placed on establishing structure–activity relationships of inhibitors containing the promising P1 C-terminal acyl sulfonamide group. The properties of the acyl sulfonamide functionality that are important for producing potent inhibitors have been identified. In addition, the advantages of the acyl sulfonamide group compared to the carboxylic acid have been demonstrated in both enzymatic and cell-based assays. Besides the acyl sulfonamide functionality, the acyl cyanamide and the acyl sulfinamide groups have been identified as new carboxylic acid bioisosteres in HCV NS3 protease inhibitors. The synthetic work included the development of a fast and convenient methodology for the preparation of aryl acyl sulfonamides. The use of microwave heating and Mo(CO)6 as a solid carbon monoxide source provided aryl acyl sulfonamides from aryl halides in excellent yields. This method was subsequently used in the decoration of novel HCV NS3 protease inhibitors comprising a non-natural P1 moiety. This new class of compounds can be used as lead structures in a future optimization process aimed at producing more drug-like HCV NS3 protease inhibitors.