Bank Customer Churn Prediction : A comparison between classification and evaluation methods
This study aims to assess which supervised statistical learning method; random forest, logistic regression or K-nearest neighbor, that is the best at predicting banks customer churn. Additionally, the study evaluates which cross-validation set approach; k-Fold cross-validation or leave-one-out cross...
Main Authors: | , |
---|---|
Format: | Others |
Language: | English |
Published: |
Uppsala universitet, Statistiska institutionen
2020
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411918 |