Generate synthetic datasets and scenarios by learning from the real world
The modern paradigms of machine learning algorithms and artificial intelligence base their success on processing a large quantity of data. Nevertheless, data does not come for free, and it can sometimes be practically unfeasible to collect enough data to train machine learning models successfully. T...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305275 |