Tool orientation estimation to control the angle tightening process of threaded joints

The most common method for securing components to each other during manufacturing of products is by joining these using screws, nuts and bolts. The benefit of using this method is that it is cheap and makes it easy to join and separate components quickly. The clamping force in the threaded joint is...

Full description

Bibliographic Details
Main Author: Thiel, Max
Format: Others
Language:English
Published: KTH, Skolan för industriell teknik och management (ITM) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264070
Description
Summary:The most common method for securing components to each other during manufacturing of products is by joining these using screws, nuts and bolts. The benefit of using this method is that it is cheap and makes it easy to join and separate components quickly. The clamping force in the threaded joint is critical to the quality and in some respect the life length of the product, which makes it important to have good control of the clamping force. There are two main tightening strategies used when tightening a threaded joint – torque controlled tightening and angle controlled tightening. The first method monitors the applied torque during the entire tightening and halts when the target torque is reached. The second method, angle controlled tightening, measures the rotation of the threaded fastener in the joint. This method generally produces more accurate results with less scatter in the final clamping force. In order to apply angle controlled tightening using a hand-held tool it is required to not only control the output angle of the tool, but also how the tool moves in relation to the joint. This is to ensure that the control signal from the motor actually translates to clamping force in the joint and not to rotation of the tool itself. This thesis project aims to analyze data from an IMU (Inertial Measurement Unit) built into a hand-held tightening tool in order to estimate tool movement and thereby react to undesired tool movement. An analysis has been performed to evaluate how the two sensor fusion methods – Kalman filter and Particle filter – perform in terms of estimating the orientation of the tool by combining measurements from the IMU’s accelerometers and gyroscopes. Data was collected from the tool IMU during a number of angle tightening sequences with varying setups. Test were performed both for when the tool was kept still during the entire tightening and for when the tools was allowed to move freely. Tests were also carried out for a couple of different tool orientations to better understand the behavior of the two sensor fusion models. The results from the tests showed that the Kalman Filter was able to better estimate the tool orientation. Especially in terms of accuracy, repeatability and reliability. === Den vanligaste metoden för att fästa komponenter till varandra vid tillverkning av produkter är genom att sammanfoga komponenterna med hjälp av skruvar, bultar och muttrar. Fördelen med denna metod är att den är billig och gör det enkelt att sammanfoga och lossa komponenter snabbt. Klämkraften i skruvförbandet är avgörande för hur väl en produkt är ihopsatt och påverkar därmed dess kvalitet, samt i viss mån livslängd. Det finns i huvudsak två olika strategier vid åtdragning i ett skruvförband – momentåtdragning och vinkelåtdragning. Den första metoden bygger på att man kontinuerligt mäter momentet under åtdragning och avbryter åtdragningen när rätt moment uppnåtts. Den andra metoden, vinkelåtdragning, mäter hur många grader fästelementet roterat i förbandet. Metoden producerar i regel högre precision med mindre spridning av den slutgiltiga klämraften. För att kunna tillämpa vinkelåtdragning med ett handhållet verktyg räcker det inte att kontroll över rotationen av verktygets utgående axel, utan även hur verktyget rör sig i förhållande till förbandet under åtdragning. Detta för att säkerställa att verktygets motorstyrning resulterar i önskad klämkraft i förbandet och inte rotation av själva verktyget. Detta examensarbete ämnar analysera data från en IMU (Inertial Measurement Unit) integrerad i ett handhållet åtdragningsverktyg för att estimera verktygets rörelse under vinkelåtdragning och därmed kompensera för oönskade rörelser. En analys har gjorts för hur väl de två olika sensorfusions-modellerna - Kalmanfilter och Partikelfilter – presterar när det kommer till att uppskatta orientering för verktyget genom att kombinera data från IMU-enhetens accelerometrar och gyroskop. Data samlades in från verktygets IMU från ett antal dragningar med varierande uppställning. Tester genomfördes dels då verktyget hölls stilla under hela åtdragningen och dels då det tilläts röra sig fritt. Tester genomfördes även för flera olika orienteringar av verktyget för att i större utsträckning kunna säga hur de olika sensorfusions-modellerna presterade. Resultatet av testerna visade att Kalmanfiltret kunde producera bättre estimeringar av verktygets orientering, speciellt i avseende precision, repeterbarhet och tillförlitlighet.