Investigating the Practicality of Just-in-time Defect Prediction with Semi-supervised Learning on Industrial Commit Data

Some of the challenges faced with Just-in-time defect (JIT) prediction are achieving high performing models and obtaining large quantities of labelled data. There is also a limited number of studies that actually test the effectiveness of software defect prediction models in practice. In this thesis...

Full description

Bibliographic Details
Main Author: Syed, Arsalan
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254955