Semi-Supervised Learning with Sparse Autoencoders in Automatic Speech Recognition
This work is aimed at exploring semi-supervised learning techniques to improve the performance of Automatic Speech Recognition systems. Semi-supervised learning takes advantage of unlabeled data in order to improve the quality of the representations extracted from the data.The proposed model is a ne...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för datavetenskap och kommunikation (CSC)
2016
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-197628 |