Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
This thesis aims to explain how a Artificial Neural Network algorithm could be used as means of control for a Autonomous Vehicle. It describes the theory behind the neural network and Autonomous Vehicles, and how a prototype with a camera as its only input can be designed to test and evaluate the al...
Main Authors: | , |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Maskinkonstruktion (Inst.)
2016
|
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191192 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-191192 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-1911922016-08-26T05:06:52ZArtificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicleengBRUCE, WILLIAMVON OTTER, EDVINKTH, Maskinkonstruktion (Inst.)KTH, Maskinkonstruktion (Inst.)2016This thesis aims to explain how a Artificial Neural Network algorithm could be used as means of control for a Autonomous Vehicle. It describes the theory behind the neural network and Autonomous Vehicles, and how a prototype with a camera as its only input can be designed to test and evaluate the algorithms capabilites, and also drive using it. The thesis will show that the Artificial Neural Network can, with a image resolution of 100 × 100 and a training set with 900 images, makes decisions with a 0.78 confidence level. Denna rapport har som mal att beskriva hur en Artificiellt Neuronnatverk al- goritm kan anvandas for att kontrollera en bil. Det beskriver teorin bakom neu- ronnatverk och autonoma farkoster samt hur en prototyp, som endast anvander en kamera som indata, kan designas for att testa och utvardera algoritmens formagor. Rapporten kommer visa att ett neuronnatverk kan, med bildupplos- ningen 100 × 100 och traningsdata innehallande 900 bilder, ta beslut med en 0.78 sakerhet. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191192application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
description |
This thesis aims to explain how a Artificial Neural Network algorithm could be used as means of control for a Autonomous Vehicle. It describes the theory behind the neural network and Autonomous Vehicles, and how a prototype with a camera as its only input can be designed to test and evaluate the algorithms capabilites, and also drive using it. The thesis will show that the Artificial Neural Network can, with a image resolution of 100 × 100 and a training set with 900 images, makes decisions with a 0.78 confidence level. === Denna rapport har som mal att beskriva hur en Artificiellt Neuronnatverk al- goritm kan anvandas for att kontrollera en bil. Det beskriver teorin bakom neu- ronnatverk och autonoma farkoster samt hur en prototyp, som endast anvander en kamera som indata, kan designas for att testa och utvardera algoritmens formagor. Rapporten kommer visa att ett neuronnatverk kan, med bildupplos- ningen 100 × 100 och traningsdata innehallande 900 bilder, ta beslut med en 0.78 sakerhet. |
author |
BRUCE, WILLIAM VON OTTER, EDVIN |
spellingShingle |
BRUCE, WILLIAM VON OTTER, EDVIN Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle |
author_facet |
BRUCE, WILLIAM VON OTTER, EDVIN |
author_sort |
BRUCE, WILLIAM |
title |
Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle |
title_short |
Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle |
title_full |
Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle |
title_fullStr |
Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle |
title_full_unstemmed |
Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle |
title_sort |
artificial neural network autonomous vehicle : artificial neural network controlled vehicle |
publisher |
KTH, Maskinkonstruktion (Inst.) |
publishDate |
2016 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191192 |
work_keys_str_mv |
AT brucewilliam artificialneuralnetworkautonomousvehicleartificialneuralnetworkcontrolledvehicle AT vonotteredvin artificialneuralnetworkautonomousvehicleartificialneuralnetworkcontrolledvehicle |
_version_ |
1718380180483866624 |