Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle

This thesis aims to explain how a Artificial Neural Network algorithm could be used as means of control for a Autonomous Vehicle. It describes the theory behind the neural network and Autonomous Vehicles, and how a prototype with a camera as its only input can be designed to test and evaluate the al...

Full description

Bibliographic Details
Main Authors: BRUCE, WILLIAM, VON OTTER, EDVIN
Format: Others
Language:English
Published: KTH, Maskinkonstruktion (Inst.) 2016
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191192
id ndltd-UPSALLA1-oai-DiVA.org-kth-191192
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1911922016-08-26T05:06:52ZArtificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicleengBRUCE, WILLIAMVON OTTER, EDVINKTH, Maskinkonstruktion (Inst.)KTH, Maskinkonstruktion (Inst.)2016This thesis aims to explain how a Artificial Neural Network algorithm could be used as means of control for a Autonomous Vehicle. It describes the theory behind the neural network and Autonomous Vehicles, and how a prototype with a camera as its only input can be designed to test and evaluate the algorithms capabilites, and also drive using it. The thesis will show that the Artificial Neural Network can, with a image resolution of 100 × 100 and a training set with 900 images, makes decisions with a 0.78 confidence level. Denna rapport har som mal att beskriva hur en Artificiellt Neuronnatverk al- goritm kan anvandas for att kontrollera en bil. Det beskriver teorin bakom neu- ronnatverk och autonoma farkoster samt hur en prototyp, som endast anvander en kamera som indata, kan designas for att testa och utvardera algoritmens formagor. Rapporten kommer visa att ett neuronnatverk kan, med bildupplos- ningen 100 × 100 och traningsdata innehallande 900 bilder, ta beslut med en 0.78 sakerhet. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191192application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
description This thesis aims to explain how a Artificial Neural Network algorithm could be used as means of control for a Autonomous Vehicle. It describes the theory behind the neural network and Autonomous Vehicles, and how a prototype with a camera as its only input can be designed to test and evaluate the algorithms capabilites, and also drive using it. The thesis will show that the Artificial Neural Network can, with a image resolution of 100 × 100 and a training set with 900 images, makes decisions with a 0.78 confidence level. === Denna rapport har som mal att beskriva hur en Artificiellt Neuronnatverk al- goritm kan anvandas for att kontrollera en bil. Det beskriver teorin bakom neu- ronnatverk och autonoma farkoster samt hur en prototyp, som endast anvander en kamera som indata, kan designas for att testa och utvardera algoritmens formagor. Rapporten kommer visa att ett neuronnatverk kan, med bildupplos- ningen 100 × 100 och traningsdata innehallande 900 bilder, ta beslut med en 0.78 sakerhet.
author BRUCE, WILLIAM
VON OTTER, EDVIN
spellingShingle BRUCE, WILLIAM
VON OTTER, EDVIN
Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
author_facet BRUCE, WILLIAM
VON OTTER, EDVIN
author_sort BRUCE, WILLIAM
title Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
title_short Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
title_full Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
title_fullStr Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
title_full_unstemmed Artificial Neural Network Autonomous Vehicle : Artificial Neural Network controlled vehicle
title_sort artificial neural network autonomous vehicle : artificial neural network controlled vehicle
publisher KTH, Maskinkonstruktion (Inst.)
publishDate 2016
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191192
work_keys_str_mv AT brucewilliam artificialneuralnetworkautonomousvehicleartificialneuralnetworkcontrolledvehicle
AT vonotteredvin artificialneuralnetworkautonomousvehicleartificialneuralnetworkcontrolledvehicle
_version_ 1718380180483866624