Finite difference schemes for elliptic partial differential equations requiring a non-uniform mesh
A variety of finite difference schemes are explored for the numerical solution of elliptic partial differential equations, specifically the Poisson and convection-diffusion equations. Problems are investigated that require the use of a non-uniform or non-square mesh. This may be due to a non-square...
Main Author: | |
---|---|
Language: | English |
Published: |
University of British Columbia
2015
|
Online Access: | http://hdl.handle.net/2429/55607 |