Novel peptide-derived cathepsin K inhibitors from Streptomyces

Human cathepsin K is a cysteine protease that is a member of the papain superfamily. It is selectively expressed in osteoclasts where it is involved in collagen type I degradation during bone resorption. As such, cathepsin K represents a potential drug target for the treatment of metabolic bone dise...

Full description

Bibliographic Details
Main Author: Kruglyak, Natalya
Language:English
Published: University of British Columbia 2010
Online Access:http://hdl.handle.net/2429/30305
id ndltd-UBC-oai-circle.library.ubc.ca-2429-30305
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-303052018-01-05T17:24:46Z Novel peptide-derived cathepsin K inhibitors from Streptomyces Kruglyak, Natalya Human cathepsin K is a cysteine protease that is a member of the papain superfamily. It is selectively expressed in osteoclasts where it is involved in collagen type I degradation during bone resorption. As such, cathepsin K represents a potential drug target for the treatment of metabolic bone diseases such as osteoporosis. In the search for novel inhibitors of cathepsin K, several Streptomyces strains have been screened. The strain designated IS2-4 was observed to secrete inhibitors of cathepsin K into its growth media. A bioassay-guided purification of the inhibitory activity resulted in the isolation of five compounds, 6-10. Although appearing to be derivatives of the known microbial cysteine protease inhibitor leupeptin, compounds 6-10 are structurally novel. Compounds 6 and 9 inhibited cathepsin K in a concentration dependent manner with Ki values of 44 and 64 μM, respectively. In addition, a 2.1 Å resolution crystal structure of cathepsin K in complex with 6 was determined. The structure revealed that compound 6 has been cleaved by cathepsin K into acetyl-leucyl-leucine and a pyridotriazine fragment, with the former interacting with the S1’ and S2’ subsites and the latter binding in the S2 subsite. These results suggest a unique mechanism for the inhibition of cathepsin K. Moreover, since cathepsin K normally prefers leucine residues at S2, the preferential binding of the pyridotriazine fragment of 6 over the acetyl-leucyl-leucine fragment at S2 is unusual as well. Medicine, Faculty of Biochemistry and Molecular Biology, Department of Graduate 2010-12-07T16:44:33Z 2010-12-07T16:44:33Z 2010 2011-05 Text Thesis/Dissertation http://hdl.handle.net/2429/30305 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Human cathepsin K is a cysteine protease that is a member of the papain superfamily. It is selectively expressed in osteoclasts where it is involved in collagen type I degradation during bone resorption. As such, cathepsin K represents a potential drug target for the treatment of metabolic bone diseases such as osteoporosis. In the search for novel inhibitors of cathepsin K, several Streptomyces strains have been screened. The strain designated IS2-4 was observed to secrete inhibitors of cathepsin K into its growth media. A bioassay-guided purification of the inhibitory activity resulted in the isolation of five compounds, 6-10. Although appearing to be derivatives of the known microbial cysteine protease inhibitor leupeptin, compounds 6-10 are structurally novel. Compounds 6 and 9 inhibited cathepsin K in a concentration dependent manner with Ki values of 44 and 64 μM, respectively. In addition, a 2.1 Å resolution crystal structure of cathepsin K in complex with 6 was determined. The structure revealed that compound 6 has been cleaved by cathepsin K into acetyl-leucyl-leucine and a pyridotriazine fragment, with the former interacting with the S1’ and S2’ subsites and the latter binding in the S2 subsite. These results suggest a unique mechanism for the inhibition of cathepsin K. Moreover, since cathepsin K normally prefers leucine residues at S2, the preferential binding of the pyridotriazine fragment of 6 over the acetyl-leucyl-leucine fragment at S2 is unusual as well. === Medicine, Faculty of === Biochemistry and Molecular Biology, Department of === Graduate
author Kruglyak, Natalya
spellingShingle Kruglyak, Natalya
Novel peptide-derived cathepsin K inhibitors from Streptomyces
author_facet Kruglyak, Natalya
author_sort Kruglyak, Natalya
title Novel peptide-derived cathepsin K inhibitors from Streptomyces
title_short Novel peptide-derived cathepsin K inhibitors from Streptomyces
title_full Novel peptide-derived cathepsin K inhibitors from Streptomyces
title_fullStr Novel peptide-derived cathepsin K inhibitors from Streptomyces
title_full_unstemmed Novel peptide-derived cathepsin K inhibitors from Streptomyces
title_sort novel peptide-derived cathepsin k inhibitors from streptomyces
publisher University of British Columbia
publishDate 2010
url http://hdl.handle.net/2429/30305
work_keys_str_mv AT kruglyaknatalya novelpeptidederivedcathepsinkinhibitorsfromstreptomyces
_version_ 1718582713906102272