Application of Electroless Copper Plating on Photo-imageable Dielectric Material by Reactive Palladium Nanoparticles

碩士 === 國立交通大學 === 理學院應用科技學程 === 106 === Electroless-deposition Copper (E’less Cu) is one of most commend technique in electronic package industry. In this work, two step surface modification technique is applied to set up an attachable surface by using RCA-SC1 (standard clean process of semiconducto...

Full description

Bibliographic Details
Main Authors: Lin, Wei-Ti, 林緯廸
Other Authors: Chiu, Hsin-Tien
Format: Others
Language:zh-TW
Published: 2017
Online Access:http://ndltd.ncl.edu.tw/handle/ev8xr9
Description
Summary:碩士 === 國立交通大學 === 理學院應用科技學程 === 106 === Electroless-deposition Copper (E’less Cu) is one of most commend technique in electronic package industry. In this work, two step surface modification technique is applied to set up an attachable surface by using RCA-SC1 (standard clean process of semiconductor industry) or radio frequency (RF) power plasma and the 3- 2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) for PVA-Pd attach which as the catalyst of E’less deposition. Applying the catalyst agent developed in previous study and synthesized in the laboratory. Using polyvinyl alcohol (PVA) as protective agent of the palladium nanoparticle with well-define size of 2-5nm. [1] The PID surface modification and the adhesion between PID and e’less Cu is evaluated by water contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray fluorescence analysis (XRF) and cross cut test. The results showed that using PVA-Pd as catalyst of E’less Cu on PID had better adhesion than commercial Sn/Pd and applying plasma is more suitable method than RCA-SC1 for organic polymer as the surface hydrophilicity modification method. Based on SEM and AFM analysis, one of the factor to enhance the adhesion is that micro-morphology and roughness occurred after plasma process. The XPS analysis showed many functional groups generated after treatment it might be another factor to enhance adhesion performance of E’less Cu on PID. In the practical application point of view, this study demonstrate “wet process” alternative for PID metallization and try to resolve the mechanism of surface modification.