Summary: | 碩士 === 明志科技大學 === 材料工程系碩士班 === 106 === n-type and p-type hydrogenated nanocrystalline silicon (nc-Si: H) thin films were deposited by the LIA-ICP-CVD (inductively coupled plasma CVD) system. Using Langmuir Probe discussed plasma conditions effect on the thin films deposition. The films properties Si-H bond, microstructure, crystallinity and conductivity were characterized using X-Ray Diffractometer and Fourier Transform Infrared Spectroscopy, Raman spectrometry, Hall Effect Measurement System, Which enhance the quality of thin films.
From the microstructure of the films, it has been found that a small cracks in the nc-Si:H films prepared by ICP-CVD, thus the carrier mobility in the film is low, but the cracks are decreases with increasing of the substrate temperature and decreasing of the total flow rate. As a result, the conductivity get increases. By SIMS analysis, it has been known that ICP-CVD is very effective for the doping of boron and phosphorus, for the amount of doping in the nc-Si:H films have reached at the solution limit.
The Heterojunction with Intrinsic Thin-layer (HIT) solar cells are successfully prepared by ICP-CVD although the efficiency is 1.5%, but I-V curve can find the p-n rectifier effect, indicating the effectiveness of doping. The low efficiency is due to excessive doping. Consequently, The VOC and ISC are very small.
|